I think assigning real (or hyperreal) values to possible universes can give really aesthetic properties (edit: at least to me; probably much less aesthetic for those who “don’t find unbounded utilities very appealing”) that I’d roughly call “additivity” or “linearity,” like: if A and B are systems, U(universe containing A) + U(universe containing B) = U(universe containing A and B). (This assumes that value is local, or something, which seems reasonable.) Utilities contain more than just lexical-ordering information if we can use them to describe the utility of new possible universes.
Perhaps more importantly, real and hyperreal utilities seem to play nice with finite lotteries, which seems quite desirable (and quite enough reason to have scalar utilities), even though it isn’t as strong as we’d hope.
I think assigning real (or hyperreal) values to possible universes can give really aesthetic properties (edit: at least to me; probably much less aesthetic for those who “don’t find unbounded utilities very appealing”) that I’d roughly call “additivity” or “linearity,” like: if A and B are systems, U(universe containing A) + U(universe containing B) = U(universe containing A and B). (This assumes that value is local, or something, which seems reasonable.) Utilities contain more than just lexical-ordering information if we can use them to describe the utility of new possible universes.
Perhaps more importantly, real and hyperreal utilities seem to play nice with finite lotteries, which seems quite desirable (and quite enough reason to have scalar utilities), even though it isn’t as strong as we’d hope.