Why 50/60Hz? It has to be too low to be heard, to high to be seen, high enough for transformation, low enough for low induction losses, low enough for simple rotating machines. Trains can not use 50⁄60 so they went with 1⁄3 (16+2/3 Hz or 20 Hz) Grid frequency is controlled to +-150mHz if that fails private customers might get disconnected/dropped. The time derivative of the grid frequency is a measure of the relative power mismatch.
It’s not really too high to be seen either, lights that flicker at mains frequency can be pretty unpleasant on the eyes, and give some people headaches.
True, I had not claimed that all criteria could or have been met. Because of the noise and the heat I just the other day replaced the inductive load in some of my very old but still fully functioning kitchen counter lights, with modern switching current regulators. The 50 Hz produce a 100 Hz tone that had been bothering me for decades. But even some of those can be heard by some people. (Not me I am deaf to anything >10kHz)
It is a compromise in an area of sensory overlap but the human senses are not equally sensitive to all frequencies. Your hearing is way better at 3kHz. At your age you will still remember CRT monitors that would operate at 60 Hz at max resolution, bad but they did get used.
Why 50/60Hz? It has to be too low to be heard, to high to be seen, high enough for transformation, low enough for low induction losses, low enough for simple rotating machines. Trains can not use 50⁄60 so they went with 1⁄3 (16+2/3 Hz or 20 Hz)
Grid frequency is controlled to +-150mHz if that fails private customers might get disconnected/dropped.
The time derivative of the grid frequency is a measure of the relative power mismatch.
50-60Hz is not too low to be heard: https://www.youtube.com/watch?v=bslHKEh7oZk
It’s not really too high to be seen either, lights that flicker at mains frequency can be pretty unpleasant on the eyes, and give some people headaches.
True, I had not claimed that all criteria could or have been met. Because of the noise and the heat I just the other day replaced the inductive load in some of my very old but still fully functioning kitchen counter lights, with modern switching current regulators. The 50 Hz produce a 100 Hz tone that had been bothering me for decades. But even some of those can be heard by some people. (Not me I am deaf to anything >10kHz)
It is a compromise in an area of sensory overlap but the human senses are not equally sensitive to all frequencies. Your hearing is way better at 3kHz. At your age you will still remember CRT monitors that would operate at 60 Hz at max resolution, bad but they did get used.