By “better than 50% accuracy” I am trying to convey “Provide an algorithm such that if you ran a casino where the players acted as ROB, the casino can price the game at even money and come out on top, given the law of large numbers”.
(Perhaps?) more precisely I mean that for any given instantiation of ROB’s strategy, then for any given target reward R and payoff probability P<1 there exists a number N such that if you ran N trials betting even money with ROB you would have P probability to have at least R payoff (assuming you start with 1 dollar or whatever).
You can assume ROB will know your algorithm when choosing his distribution of choices.
By “better than 50% accuracy” I am trying to convey “Provide an algorithm such that if you ran a casino where the players acted as ROB, the casino can price the game at even money and come out on top, given the law of large numbers”.
(Perhaps?) more precisely I mean that for any given instantiation of ROB’s strategy, then for any given target reward R and payoff probability P<1 there exists a number N such that if you ran N trials betting even money with ROB you would have P probability to have at least R payoff (assuming you start with 1 dollar or whatever).
You can assume ROB will know your algorithm when choosing his distribution of choices.