I think that works actually. If you observe 30 quantum heads in a row you have strong evidence in favor of MWI. The quantum suicide thing is just a way of increasing the proportion of future you’s that have this information.
If you observe 30 quantum heads in a row you have strong evidence in favor of MWI.
But then if I observed any string of 30 outcomes I would have strong evidence for MWI (if the coin is fair, “p” for any specific string would be 2^-30).
Sorry, now I have no idea what we’re talking about. If your experiment involves killing yourself after seeing the wrong string, this is close to the standard quantum suicide.
If not, I would have to see the probabilities to understand. My analysis is like this: P(I observe string S | MWI) = P(I observe string S | Copenhagen) = 2^-30, regardless of whether the string S is specified beforehand or not. MWI doesn’t mean that my next Everett branch must be S because I say so.
The reason why this doesn’t work (for coins) is that (when MWI is true) A=”my observation is heads” implies B=”some Y observes heads”, but not the other way around. So P(B|A)=1, but P(A|B) = p, and after plugging that into the Bayes formula we have P(MWI|A) = P(Copenhagen|A).
Can you translate that to the quantum suicide case?
I think that works actually. If you observe 30 quantum heads in a row you have strong evidence in favor of MWI. The quantum suicide thing is just a way of increasing the proportion of future you’s that have this information.
But then if I observed any string of 30 outcomes I would have strong evidence for MWI (if the coin is fair, “p” for any specific string would be 2^-30).
You have to specify a particular string to look for before you do the experiment.
Sorry, now I have no idea what we’re talking about. If your experiment involves killing yourself after seeing the wrong string, this is close to the standard quantum suicide.
If not, I would have to see the probabilities to understand. My analysis is like this: P(I observe string S | MWI) = P(I observe string S | Copenhagen) = 2^-30, regardless of whether the string S is specified beforehand or not. MWI doesn’t mean that my next Everett branch must be S because I say so.
The reason why this doesn’t work (for coins) is that (when MWI is true) A=”my observation is heads” implies B=”some Y observes heads”, but not the other way around. So P(B|A)=1, but P(A|B) = p, and after plugging that into the Bayes formula we have P(MWI|A) = P(Copenhagen|A).
Can you translate that to the quantum suicide case?