Earlier, I should have referred to the calculation as being in part IV, not part V. I’ve read part V only now—including the stuff about “branch switching” and how “The observer can switch between realities without even noticing, because all records will agree with the newly formed reality.” When I said these ideas led towards “stochastic, piecewise-linear Bohmian mechanics”, I was more right than I knew!
Bohmian mechanics is rightly criticised for supposedly being just a single-world theory, yet having all those other world-branches in the pilot wave. If your account of reality includes wavefunctions with seriously macroscopic superpositions, then you either need to revise the theory so it doesn’t contain such wavefunctions, or you need to embrace some form of many-world-ism. Supposing that “hidden reality branches” exist, but don’t get experienced until your personal stream-of-consciousness switches into them, is juvenile solipsism.
If that is where your theory leads, then I have little interest in continuing this discussion. I was suspicious from the beginning about the role that the “subjectively reconstructed state of the universe” was playing in your theory, but I didn’t know exactly what was going on. I had hoped that by discussing a particular physical setup (Stern-Gerlach), we would get to see your ideas in action, and learn how they work by demonstration. But now it seems that your outlook boils down to quantum dualism in a virtual multiverse. There is a subjective history which is a series of these “dominant eigenstates”, plucked from a superposition whose other branches are there in the wavefunction, but which aren’t considered fully real unless the subjective history happens to jump to them.
There is some slim possibility that your basic idea could play a role in the local microscopic dynamics of a new theory, distinct from quantum mechanics but which produces quantum mechanics in a certain limit. Or maybe it could be the basis of a new type of many-worlds theory. But branch-switching observers is ridiculous and it’s a reductio ad absurdum of what you currently offer.
ETA: I would really like to know what motivates the downvote on this comment. Is there someone out there who thinks that a theory of physics in which “the observer” can “switch”, from one history, to another in which all memories and records have been modified to imply a different past, is actually worth considering as an explanation of quantum mechanics? I’m not exaggerating; see page 11 here, the final paragraph of part V, section A.
You keep ignoring the fact that the dominant eigenstate is derived from nothing but the unitary evolution and the limitations of the observer. This is not a “new theory” or an interpretation of any kind. Since you are not willing to discuss that part your comments regarding the validity of my approach are entirely meaningless. You criticize my work based on the results which are not to your liking, and not with respect to the methods used to obtain these results. So I beg you one last time, let us rationally discuss my arguments, and not what you believe is a valid result or not. If you can show my arguments to be false beyond any doubt, based on the arguments that I use in my blog, or alternatively, if you can point out any assumptions that are arbitrary or not well founded I will accept your statement. But not like this. If you claim to be a rationalist then this is the way to go.
Any other takers out there who are willing to really discuss the matter without dismissing it first?
Edit :
And just for the record, this has absolutely nothing to do with Bohmian mechanics. There is no extra structure that contains the real outcomes before measurement or any such thing. The only common point is the single reality.
Furthermore, your quote of page 11 leaves out an important fact. Namely that the switching occurs only for the very short time history where the dominant eigenstates interact and stabilizes for the long term, meaning within a few scattering events of which you probably experience billions every second. There is absolutely no way for you to switch between dominant eigenstates with different memories regarding actual macroscopic events.
Earlier, I should have referred to the calculation as being in part IV, not part V. I’ve read part V only now—including the stuff about “branch switching” and how “The observer can switch between realities without even noticing, because all records will agree with the newly formed reality.” When I said these ideas led towards “stochastic, piecewise-linear Bohmian mechanics”, I was more right than I knew!
Bohmian mechanics is rightly criticised for supposedly being just a single-world theory, yet having all those other world-branches in the pilot wave. If your account of reality includes wavefunctions with seriously macroscopic superpositions, then you either need to revise the theory so it doesn’t contain such wavefunctions, or you need to embrace some form of many-world-ism. Supposing that “hidden reality branches” exist, but don’t get experienced until your personal stream-of-consciousness switches into them, is juvenile solipsism.
If that is where your theory leads, then I have little interest in continuing this discussion. I was suspicious from the beginning about the role that the “subjectively reconstructed state of the universe” was playing in your theory, but I didn’t know exactly what was going on. I had hoped that by discussing a particular physical setup (Stern-Gerlach), we would get to see your ideas in action, and learn how they work by demonstration. But now it seems that your outlook boils down to quantum dualism in a virtual multiverse. There is a subjective history which is a series of these “dominant eigenstates”, plucked from a superposition whose other branches are there in the wavefunction, but which aren’t considered fully real unless the subjective history happens to jump to them.
There is some slim possibility that your basic idea could play a role in the local microscopic dynamics of a new theory, distinct from quantum mechanics but which produces quantum mechanics in a certain limit. Or maybe it could be the basis of a new type of many-worlds theory. But branch-switching observers is ridiculous and it’s a reductio ad absurdum of what you currently offer.
ETA: I would really like to know what motivates the downvote on this comment. Is there someone out there who thinks that a theory of physics in which “the observer” can “switch”, from one history, to another in which all memories and records have been modified to imply a different past, is actually worth considering as an explanation of quantum mechanics? I’m not exaggerating; see page 11 here, the final paragraph of part V, section A.
You keep ignoring the fact that the dominant eigenstate is derived from nothing but the unitary evolution and the limitations of the observer. This is not a “new theory” or an interpretation of any kind. Since you are not willing to discuss that part your comments regarding the validity of my approach are entirely meaningless. You criticize my work based on the results which are not to your liking, and not with respect to the methods used to obtain these results. So I beg you one last time, let us rationally discuss my arguments, and not what you believe is a valid result or not. If you can show my arguments to be false beyond any doubt, based on the arguments that I use in my blog, or alternatively, if you can point out any assumptions that are arbitrary or not well founded I will accept your statement. But not like this. If you claim to be a rationalist then this is the way to go.
Any other takers out there who are willing to really discuss the matter without dismissing it first?
Edit : And just for the record, this has absolutely nothing to do with Bohmian mechanics. There is no extra structure that contains the real outcomes before measurement or any such thing. The only common point is the single reality. Furthermore, your quote of page 11 leaves out an important fact. Namely that the switching occurs only for the very short time history where the dominant eigenstates interact and stabilizes for the long term, meaning within a few scattering events of which you probably experience billions every second. There is absolutely no way for you to switch between dominant eigenstates with different memories regarding actual macroscopic events.