You’re welcome! I’m always glad to learn when knowledge I’ve gained through paperclip maximization has value to humans (though ideally I’d want to extract USD when such value is identified).
I should add (to extend this insight to some ot the particulars of your post) that the probability distribution on the integers implicitly assumed by the unary encoding you described is that smaller numbers are more likely (in proportion to their smallness), as do all n-ary number systems. So-called “scientific” notation instead favors “round” numbers, i.e. those padded with zeros the soonest in the least-significant-digit direction.
Thanks. I didn’t mean charging for comments, just that if I identified major insights, I could sell consulting services or something. Or become a professor at a university teaching the math I’ve learned from correct reasoning and paperclip maximizing. (Though my robot would need a lot of finishing touches to pass.)
You’re welcome! I’m always glad to learn when knowledge I’ve gained through paperclip maximization has value to humans (though ideally I’d want to extract USD when such value is identified).
I should add (to extend this insight to some ot the particulars of your post) that the probability distribution on the integers implicitly assumed by the unary encoding you described is that smaller numbers are more likely (in proportion to their smallness), as do all n-ary number systems. So-called “scientific” notation instead favors “round” numbers, i.e. those padded with zeros the soonest in the least-significant-digit direction.
Your comments are often pleasant to read, but I don’t pay USD for comments that are pleasant to read, and don’t know anyone who does. Sorry.
Thanks. I didn’t mean charging for comments, just that if I identified major insights, I could sell consulting services or something. Or become a professor at a university teaching the math I’ve learned from correct reasoning and paperclip maximizing. (Though my robot would need a lot of finishing touches to pass.)