14% may be too much for this. You may get most of the relevant benefits at 5%.
Most importantly, you can’t get stuff collected for free, or shipped for $10.
Well, shipping and collection may scale better for large projects. Shipping via ocean is $10/ton for 4000 miles but it may be possible to knock that down in a large operation.
Rice husk and/or straw may be perfect after some processing/shredding.
Also there might be other ingredients that are beneficial on a cost/utility basis, such as basalt fibers, shredded plastic waste, etc.
I think there’s some underlying misunderstanding of material science here. You have some fibers, OK, and they have some amount of net strength. Distributing them in ice or whatever at a really low concentration doesn’t increase the total amount of strength those fibers have. It’s not better than putting those fibers together with less filler, unless:
you specifically want only a little bit of extra tensile strength for a lot of material
you want to keep viscosity of a thermoplastic or resin sufficiently low during processing
you’re getting much better dispersion at lower loading
Adding sawdust to ice, you’re not going to get more additional strength per wood than just using good lumber or plywood.
Yes I get that the increase in tensile strength is probably going to be proportional to the percentage of fiber added, but there’s no need to go to 14% just because that was the original pykrete formula. Maybe you only need 1⁄3 of the strength. Or maybe limiting creep is more important. Or maybe you just want to make it less brittle.
I just haven’t got the data for the properties of pykrete at lower temperatures and I don’t understand how it affects creep rates.
Since the water is almost free you might be able to choose between X meter thick pykrete or 3X meter thick 1/3-strength material.
I also don’t fully understand understand what properties you’re actually going to need.
If you pay $10 per ton for rice husk or rice straw and you dilute it 90% with water, you’re left with a cost of $1.
I saw 14% for Pykrete. $10 to $20 a ton * 14% is $1.40 to $3.80.
Rice husk is very different.
Most importantly, you can’t get stuff collected for free, or shipped for $10.
14% may be too much for this. You may get most of the relevant benefits at 5%.
Well, shipping and collection may scale better for large projects. Shipping via ocean is $10/ton for 4000 miles but it may be possible to knock that down in a large operation.
Rice husk and/or straw may be perfect after some processing/shredding.
Also there might be other ingredients that are beneficial on a cost/utility basis, such as basalt fibers, shredded plastic waste, etc.
I think there’s some underlying misunderstanding of material science here. You have some fibers, OK, and they have some amount of net strength. Distributing them in ice or whatever at a really low concentration doesn’t increase the total amount of strength those fibers have. It’s not better than putting those fibers together with less filler, unless:
you specifically want only a little bit of extra tensile strength for a lot of material
you want to keep viscosity of a thermoplastic or resin sufficiently low during processing
you’re getting much better dispersion at lower loading
Adding sawdust to ice, you’re not going to get more additional strength per wood than just using good lumber or plywood.
Yes I get that the increase in tensile strength is probably going to be proportional to the percentage of fiber added, but there’s no need to go to 14% just because that was the original pykrete formula. Maybe you only need 1⁄3 of the strength. Or maybe limiting creep is more important. Or maybe you just want to make it less brittle.
I just haven’t got the data for the properties of pykrete at lower temperatures and I don’t understand how it affects creep rates.
Since the water is almost free you might be able to choose between X meter thick pykrete or 3X meter thick 1/3-strength material.
I also don’t fully understand understand what properties you’re actually going to need.