It sounds like you agree, but are saying that some analogous but more complicated problem might arise for probabilistic agents, and that it might not be resolved be whoever else is making AI unless this research is done by MIRI.
That’s not it, rather:
I think what you’re saying is that getting a good framework for reasoning about reasoning could be important for making AGI go well. This is plausible to me. And then you’re also saying that working on this Lobian stuff is a reasonable place to start. This is not obvious to me, but this seems like something that could be subtle, and I understand the position better now.
Yep. We have reasoning frameworks like the currently dominant forms of decision theory, but they don’t handle reflectivity well.
The Lob Problem isn’t a top-priority scary thing that is carved upon the tombstones of worlds, it’s more like, “Look! We managed to crisply exhibit something very precise that would go wrong with standard methods and get started on analyzing and fixing it! Before we just saw in a more intuitive sense that something would go wrong when we applied standard theories to reflective problems but now we can state three problems very precisely!” (Lob and coherent quantified belief sec. 3, nonmonotonicity of probabilistic reasoning sec. 5.2 & 7, maximizing / satisficing not being good-enough idioms for bounded agents sec. 8.) Problems with reflectivity in general are expectedly carved upon the tombstones of worlds because they expectedly cause problems with goal stability during self-modification. But to make progress on that you need crisp problems to provide fodder for getting started on finding a good shape for a reflective decision theory / tiling self-improving agent.
That’s not it, rather:
Yep. We have reasoning frameworks like the currently dominant forms of decision theory, but they don’t handle reflectivity well.
The Lob Problem isn’t a top-priority scary thing that is carved upon the tombstones of worlds, it’s more like, “Look! We managed to crisply exhibit something very precise that would go wrong with standard methods and get started on analyzing and fixing it! Before we just saw in a more intuitive sense that something would go wrong when we applied standard theories to reflective problems but now we can state three problems very precisely!” (Lob and coherent quantified belief sec. 3, nonmonotonicity of probabilistic reasoning sec. 5.2 & 7, maximizing / satisficing not being good-enough idioms for bounded agents sec. 8.) Problems with reflectivity in general are expectedly carved upon the tombstones of worlds because they expectedly cause problems with goal stability during self-modification. But to make progress on that you need crisp problems to provide fodder for getting started on finding a good shape for a reflective decision theory / tiling self-improving agent.