This sounds interesting, however the longer I think about it, the less I’m in support of it.
Regarding match length, I think the main issue here is not that it is variable, but that it is unknown to the agents. This will lead to a tournament of nice strategies first exterminating all non-nice strategies, then always cooperating with each other. This won’t change even if you can simulate your opponents, because the smartest way to play against TFT is still TFT (CooperateBot). If you take away the whole concept of parasites, I don’t see much of interest left.
I don’t see random mutations coupled with sexual reproduction work either; primarily because there is no compressed blueprint that can be altered, which means that entropy will increase. I feel that purposeful evolution of an intelligent design, like shokwave’s proposal of a parameter with a gaussian distribution that can be included in any way you like, is a more viable option.
I’m also not sure whether evolution and simulation go well together at all, because ultimately you want to play optimally against every other strategy, no matter how many and which other strategies are in the pool. If you can’t simulate your opponent, evolution is there to help you adapting to the changing pool of strategies, but if you can, it seems kind of pointless to me.
This sounds interesting, however the longer I think about it, the less I’m in support of it.
Regarding match length, I think the main issue here is not that it is variable, but that it is unknown to the agents. This will lead to a tournament of nice strategies first exterminating all non-nice strategies, then always cooperating with each other. This won’t change even if you can simulate your opponents, because the smartest way to play against TFT is still TFT (CooperateBot). If you take away the whole concept of parasites, I don’t see much of interest left.
I don’t see random mutations coupled with sexual reproduction work either; primarily because there is no compressed blueprint that can be altered, which means that entropy will increase. I feel that purposeful evolution of an intelligent design, like shokwave’s proposal of a parameter with a gaussian distribution that can be included in any way you like, is a more viable option.
I’m also not sure whether evolution and simulation go well together at all, because ultimately you want to play optimally against every other strategy, no matter how many and which other strategies are in the pool. If you can’t simulate your opponent, evolution is there to help you adapting to the changing pool of strategies, but if you can, it seems kind of pointless to me.