Yes! I was thinking about adding a couple paragraphs about this, but couldn’t figure out how to word it quite right.
When you’re trying to create solid theories de-novo, a huge part of it is finding people who’ve done a bunch of experiments with it, looking at the outcomes, and paying really close attention to the places where they don’t match your existing theory. Elinor Ostrom is one of the best examples I know: she won a Nobel in economics for basically saying “ok, how do people actually solve commons problems in practice, and does it make sense from an economic perspective?”
In the case of a wheel with weights on it, that’s been nailed down really well already by generations of physicists, so it’s not a very good example for theory-generation.
But one important aspect does carry over: you have to actually do the math, to see what the theory actually predicts. Otherwise, you won’t notice when the experimental outcomes don’t match, so you won’t know that the theory is incomplete.
Even in the wheel example, I’d bet a lot of physics-savvy people would just start from “oh, all that matters here is moment of inertia”, without realizing that it’s possible to shift the initial gravitational potential. But if you try a few random configurations, and actually calculate how fast you expect them to go, then you’ll notice very quickly that the theory is incomplete.
Yes! I was thinking about adding a couple paragraphs about this, but couldn’t figure out how to word it quite right.
When you’re trying to create solid theories de-novo, a huge part of it is finding people who’ve done a bunch of experiments with it, looking at the outcomes, and paying really close attention to the places where they don’t match your existing theory. Elinor Ostrom is one of the best examples I know: she won a Nobel in economics for basically saying “ok, how do people actually solve commons problems in practice, and does it make sense from an economic perspective?”
In the case of a wheel with weights on it, that’s been nailed down really well already by generations of physicists, so it’s not a very good example for theory-generation.
But one important aspect does carry over: you have to actually do the math, to see what the theory actually predicts. Otherwise, you won’t notice when the experimental outcomes don’t match, so you won’t know that the theory is incomplete.
Even in the wheel example, I’d bet a lot of physics-savvy people would just start from “oh, all that matters here is moment of inertia”, without realizing that it’s possible to shift the initial gravitational potential. But if you try a few random configurations, and actually calculate how fast you expect them to go, then you’ll notice very quickly that the theory is incomplete.