I am a bit of a physicist, and I really really hope this can be a good step forward. It certainly has the feel of being new enough to have a snowball’s chance in hell, at least. Some of his graph-based ideas match what I’ve also been pondering, not on anywhere near grand a level: how to relate cellular structures to Lorentz invariance:
This approach also purports to describe quantum mechanics, including the measurement process, and the general relativity in the same language, sort of. Which would be neat. My quick browse through the “technical introduction” didn’t let me form a coherent opinion about the viability or quality of it. But, at least it’s not Gisin’s “let’s just use intuitionist math instead of the standard math” approach. On the other hand, Scott Aaronson seems to be skeptical.
Ultimately, the real test will be the predictions that this approach makes that are outside of what QM and GR predict already. And how well they can be tested.
I am a bit of a physicist, and I really really hope this can be a good step forward. It certainly has the feel of being new enough to have a snowball’s chance in hell, at least. Some of his graph-based ideas match what I’ve also been pondering, not on anywhere near grand a level: how to relate cellular structures to Lorentz invariance:
https://www.wolframphysics.org/technical-introduction/potential-relation-to-physics/motion-and-special-relativity/index.html
This approach also purports to describe quantum mechanics, including the measurement process, and the general relativity in the same language, sort of. Which would be neat. My quick browse through the “technical introduction” didn’t let me form a coherent opinion about the viability or quality of it. But, at least it’s not Gisin’s “let’s just use intuitionist math instead of the standard math” approach. On the other hand, Scott Aaronson seems to be skeptical.
Ultimately, the real test will be the predictions that this approach makes that are outside of what QM and GR predict already. And how well they can be tested.