I agree with both evhub’s answer and Charlie Steiner/TheMajor’s answers: these models don’t really do anything that previous models couldn’t do, and they don’t really offer near-term experimentally-testable predictions. However, I think these both miss the main value of the contribution. Wolfram sums it up well in this sentence:
I have to say that I don’t think our recent discoveries shed any particular light on [simplicity of the fundamental laws]—because they basically say that lots of things in physics are generic, and independent of the specifics of the underlying rule, however simple or complex it may be.
That last sentence is the real contribution of this work: “lots of things in physics are generic, and independent of the specifics of the underlying rule, however simple or complex it may be”. I think Wolfram & co are demonstrating that certain physical laws are generic to a much greater extent than was previously realized.
Drawing an analogy to existing theoretical physics, this isn’t like general relativity or quantum mechanics (which made new testable predictions) or like unification (which integrates different physical phenomena into one model). Instead, a good analogy is Noether’s Theorem. Noether’s Theorem says that conserved quantities in physics come from the symmetry of the underlying laws—i.e. momentum is conserved because physical laws are the same throughout space, energy is conserved because the laws are the same over time, etc. It shows that momentum/energy conservation aren’t just physical phenomena of our universe, they’re mathematical phenomena which apply to large classes of dynamical systems.
Wolfram & co are doing something similar. They’re showing that e.g. the Einstein field equations aren’t just a physical phenomenon of our universe, they’re a mathematical phenomenon which applies to a large class of systems.
I agree with both evhub’s answer and Charlie Steiner/TheMajor’s answers: these models don’t really do anything that previous models couldn’t do, and they don’t really offer near-term experimentally-testable predictions. However, I think these both miss the main value of the contribution. Wolfram sums it up well in this sentence:
That last sentence is the real contribution of this work: “lots of things in physics are generic, and independent of the specifics of the underlying rule, however simple or complex it may be”. I think Wolfram & co are demonstrating that certain physical laws are generic to a much greater extent than was previously realized.
Drawing an analogy to existing theoretical physics, this isn’t like general relativity or quantum mechanics (which made new testable predictions) or like unification (which integrates different physical phenomena into one model). Instead, a good analogy is Noether’s Theorem. Noether’s Theorem says that conserved quantities in physics come from the symmetry of the underlying laws—i.e. momentum is conserved because physical laws are the same throughout space, energy is conserved because the laws are the same over time, etc. It shows that momentum/energy conservation aren’t just physical phenomena of our universe, they’re mathematical phenomena which apply to large classes of dynamical systems.
Wolfram & co are doing something similar. They’re showing that e.g. the Einstein field equations aren’t just a physical phenomenon of our universe, they’re a mathematical phenomenon which applies to a large class of systems.