Well, sure. The frequentist approach, aka mainstream statistics, deals with distributions all the time and the arguments about particular tests or predictions being optimal, or unbiased, or asymptotically true, etc. are all explicitly conditional on characteristics of underlying distributions.
Well, if you want to think of it like that, you could probably formulate all of this in information-theoretic terms and speak of needing a certain number of bits;
Yes, something like that. Take a look at Fisher information, e.g. “The Fisher information is a way of measuring the amount of information that an observable random variable X carries about an unknown parameter θ upon which the probability of X depends.”
Well, sure. The frequentist approach, aka mainstream statistics, deals with distributions all the time and the arguments about particular tests or predictions being optimal, or unbiased, or asymptotically true, etc. are all explicitly conditional on characteristics of underlying distributions.
Yes, something like that. Take a look at Fisher information, e.g. “The Fisher information is a way of measuring the amount of information that an observable random variable X carries about an unknown parameter θ upon which the probability of X depends.”