I guess people aren’t seriously trying this because it’s probably not much harder to go directly to full superconducting computers (i.e., with logic gates made out of superconductors as well) which offers a lot more benefits
It takes energy to maintain cryogenic temperatures, probably much more than the energy that would be saved by eliminating wire resistance. If I understand correctly, the interest in superconducting circuits is mostly in using them to implement quantum computation. Barring room temperature superconductors, there are probably no benefits of using superconducting circuits for classical computation.
Studies indicate the technology, which uses low temperatures in the 4-10 kelvin range to enable information to be transmitted with minimal energy loss, could yield one-petaflop systems that use just 25 kW and 100 petaflop systems that operate at 200 kW, including the cryogenic cooler. Compare this to the current greenest system, the L-CSC supercomputer from the GSI Helmholtz Center, which achieved 5.27 gigaflops-per-watt on the most-recent Green500 list. If scaled linearly to an exaflop supercomputing system, it would consume about 190 megawatts (MW), still quite a bit short of DARPA targets, which range from 20MW to 67MW.
ETA: 100 petaflops per 200 kW equals 500 gigaflops per watt, so it’s estimated to be about 100 times more energy efficient.
It takes energy to maintain cryogenic temperatures, probably much more than the energy that would be saved by eliminating wire resistance. If I understand correctly, the interest in superconducting circuits is mostly in using them to implement quantum computation.
Barring room temperature superconductors, there are probably no benefits of using superconducting circuits for classical computation.
From the article I linked to:
ETA: 100 petaflops per 200 kW equals 500 gigaflops per watt, so it’s estimated to be about 100 times more energy efficient.
Ok, I guess it depends on how big your computer is, due to the square-cube law. Bigger computers would be at an advantage.