The point is that risk aversion (at least, risk aversion construed as “preferring less negatively skewed distributions”) constitutes departure from the VNM axioms.
No, it doesn’t. Not unless it’s literally risk aversion with respect to utility.
So any VNM utility values, it would seem, will necessarily match up to our intuitive notions of personal value.
That seems to me a completely unfounded assumption.
Whatever your utility function is, we can construct a pair of graphs exactly like the ones pictured (the x-axis is not numerically labeled, after all).
The fact that the x-axis is not labeled is exactly why it’s unreasonable to think that just asking your intuition which graph “looks better” is a good way of determining whether you have an actual preference between the graphs. The shape of the graph is meaningless.
No, it doesn’t. Not unless it’s literally risk aversion with respect to utility.
That seems to me a completely unfounded assumption.
The fact that the x-axis is not labeled is exactly why it’s unreasonable to think that just asking your intuition which graph “looks better” is a good way of determining whether you have an actual preference between the graphs. The shape of the graph is meaningless.