Regarding reading Jaynes, my understanding is its good for intuition but bad for applied statistics because it does not teach you modern bayesian stuff such as WAIC and HMC, so you should first do one of the applied books. I also think Janes has nothing about causality.
I‘m afraid I have to disagree. I do sometimes regret not focusing more on applied Bayesian inference. (In fact, I have no idea what WAIC or HMC is.) But in my defence, I am an amateur analytical-philosopher & logician and I couldn’t help finding more non-sequiturs in classical expositions of probability theory than plot-holes in Tolkien novels. Perhaps if had been more naive and less critical (no offence to anyone) when I read those books, I would have “progressed” faster. I had lost hope in understanding probability theory before I read Professor Jaynes’ book; that’s why I respect the man so much. Now I have the intuition but I am still trying to reconcile it with what I read in the applied literature. I sometimes find it frustrating that I am worrying about the philosophical nuances and intricacies of probability theory while others are applying their (perhaps less coherent) understanding of it to solve problems but I strongly believe it is worth it :)
I am one of those people with an half baked epistemology and understanding of probability theory, and I am looking forward to reading Janes.
And I agree there are a lot of ad hocisms in probability theory which means everything is wrong in the logic sense as some of the assumptions are broken, but a solid moden bayesian approach has much less adhocisms and also teaches you to build advanced models in less than 400 pages.
HMC is a sampling approach to solving the posterior which in practice is superior to analytical methods, because it actually accounts for correlations in predictors and other things which are usually assumed away.
WAIC is information theory on distributions which allows you to say that model A is better than model B because the extra parameters in B are fitting noice, basically minimum description length on steroids for out of sample uncertainty.
Also I studied biology which is the worst, I can perform experiments and thus do not have to think about causality and I do not expect my model to acout for half of the signal even if it’s ‘correct’
Regarding reading Jaynes, my understanding is its good for intuition but bad for applied statistics because it does not teach you modern bayesian stuff such as WAIC and HMC, so you should first do one of the applied books. I also think Janes has nothing about causality.
I‘m afraid I have to disagree. I do sometimes regret not focusing more on applied Bayesian inference. (In fact, I have no idea what WAIC or HMC is.) But in my defence, I am an amateur analytical-philosopher & logician and I couldn’t help finding more non-sequiturs in classical expositions of probability theory than plot-holes in Tolkien novels. Perhaps if had been more naive and less critical (no offence to anyone) when I read those books, I would have “progressed” faster. I had lost hope in understanding probability theory before I read Professor Jaynes’ book; that’s why I respect the man so much. Now I have the intuition but I am still trying to reconcile it with what I read in the applied literature. I sometimes find it frustrating that I am worrying about the philosophical nuances and intricacies of probability theory while others are applying their (perhaps less coherent) understanding of it to solve problems but I strongly believe it is worth it :)
I am one of those people with an half baked epistemology and understanding of probability theory, and I am looking forward to reading Janes. And I agree there are a lot of ad hocisms in probability theory which means everything is wrong in the logic sense as some of the assumptions are broken, but a solid moden bayesian approach has much less adhocisms and also teaches you to build advanced models in less than 400 pages.
HMC is a sampling approach to solving the posterior which in practice is superior to analytical methods, because it actually accounts for correlations in predictors and other things which are usually assumed away.
WAIC is information theory on distributions which allows you to say that model A is better than model B because the extra parameters in B are fitting noice, basically minimum description length on steroids for out of sample uncertainty.
Also I studied biology which is the worst, I can perform experiments and thus do not have to think about causality and I do not expect my model to acout for half of the signal even if it’s ‘correct’