Shoot! You’re right! I think I was wrong this whole time on the impact of dropping the prior term. Cuz data term * prior term is like multiplying the distributions, and dropping the prior term is like multiplying the data distribution by the uniform one. Thanks for sticking with me :)
No worries :) Thanks a lot for your help! Much appreciated.
It’s amazing how complex a simple coin flipping problem can get when we approach it from our paradigm of objective Bayesianism. Professor Jaynes remarks on this after deriving the principle of indifference: “At this point, depending on your personality and background in this subject, you will be either greatly impressed or greatly disappointed by the result (2.91).”—page 40
A frequentist would have “solved“ this problem rather easily. Personally, I would trade simplicity for coherence any day of the week...
Shoot! You’re right! I think I was wrong this whole time on the impact of dropping the prior term. Cuz data term * prior term is like multiplying the distributions, and dropping the prior term is like multiplying the data distribution by the uniform one. Thanks for sticking with me :)
No worries :) Thanks a lot for your help! Much appreciated.
It’s amazing how complex a simple coin flipping problem can get when we approach it from our paradigm of objective Bayesianism. Professor Jaynes remarks on this after deriving the principle of indifference: “At this point, depending on your personality and background in this subject, you will be either greatly impressed or greatly disappointed by the result (2.91).”—page 40
A frequentist would have “solved“ this problem rather easily. Personally, I would trade simplicity for coherence any day of the week...
I looooove that coin flip section! Cheers