I agree that we do not have an exact model for anything in immunology, unlike physics, and there is a huge amount of uncertainty. But that’s different than saying it’s not well-understood; we have clear gold-standard methods for determining answers, even if they are very expensive. This stands in stark contrast to AI, where we don’t have the ability verify that something works or is safe at all without deploying it, and even that isn’t much of a check on its later potential for misuse.
But aside from that, I think your position is agreeing with mine much more than you imply. My understanding is that we have newerpredictivemodelswhich can give uncertain but fairly accurate answers to many narrow questions. (Older, non-ML methods also exist, but I’m less familiar with them.) In your hypothetical case, I expect that the right experts can absolutely give indicative answers about whether a novel vaccine peptide is likely or unlikely to have cross-reactivity with various immune targets, and the biggest problem is that it’s socially unacceptable to assert confidence in anything short of tested and verified case. But the models can get, in the case of the Zhang et al paper above, 70% accurate answers, which can help narrow the problem for drug or vaccine discovery, then they do need to be followed with in vitro tests and trials.
I agree that we do not have an exact model for anything in immunology, unlike physics, and there is a huge amount of uncertainty. But that’s different than saying it’s not well-understood; we have clear gold-standard methods for determining answers, even if they are very expensive. This stands in stark contrast to AI, where we don’t have the ability verify that something works or is safe at all without deploying it, and even that isn’t much of a check on its later potential for misuse.
But aside from that, I think your position is agreeing with mine much more than you imply. My understanding is that we have newer predictive models which can give uncertain but fairly accurate answers to many narrow questions. (Older, non-ML methods also exist, but I’m less familiar with them.) In your hypothetical case, I expect that the right experts can absolutely give indicative answers about whether a novel vaccine peptide is likely or unlikely to have cross-reactivity with various immune targets, and the biggest problem is that it’s socially unacceptable to assert confidence in anything short of tested and verified case. But the models can get, in the case of the Zhang et al paper above, 70% accurate answers, which can help narrow the problem for drug or vaccine discovery, then they do need to be followed with in vitro tests and trials.