Yes, the two priors aren’t as close as I might have implied. But still there are many cases where they agree. For example, given a random 6-state TM and a random 7-state TM, both Lazy and Occamian priors will usually prefer the 6-state machine.
By the way, if I had to simulate these TMs by hand, I could care a lot about computation time, but now that we have cheap computers, computation time has a smaller coefficient, and the time for building the TM is more important. This is how it works, “easiness” is measured in man-hours, it’s not just the number of steps the TM makes.
Yes, the two priors aren’t as close as I might have implied. But still there are many cases where they agree. For example, given a random 6-state TM and a random 7-state TM, both Lazy and Occamian priors will usually prefer the 6-state machine.
By the way, if I had to simulate these TMs by hand, I could care a lot about computation time, but now that we have cheap computers, computation time has a smaller coefficient, and the time for building the TM is more important. This is how it works, “easiness” is measured in man-hours, it’s not just the number of steps the TM makes.