If you look at the description you find that the model used is very simple and bois down to probably less than N*M*2 machine instructions per cycle (N=number of neurons, here 302, M=average fan in). Because the operation is really only sum and threashold. I can only guess at M but even if we approximate it with N a raspberry pi with ARM Core M 700 MHz should be able to run a nematode connectome at about 4000x its natural speed.
The point here is not the necessary speed but the ease of simulation and visualization of effects.
This gives us an upper bound of about 1.5MB ram / 100KFLOPs/10 cents per neuron. Possibly a lot lower.
If you look at the description you find that the model used is very simple and bois down to probably less than N*M*2 machine instructions per cycle (N=number of neurons, here 302, M=average fan in). Because the operation is really only sum and threashold. I can only guess at M but even if we approximate it with N a raspberry pi with ARM Core M 700 MHz should be able to run a nematode connectome at about 4000x its natural speed.
The point here is not the necessary speed but the ease of simulation and visualization of effects.