I’m currently in yellow/red hat mode for the idea that the theory described above would result in a single universe.
(I thought about moving this comment to a more appropriate thread, but it was too much work. Unless someone picks up on the idea, I’ll let the idea drop for a while and imagine there are multi-verses in order to be more on-page. Anyway, what follows below is my argument for why there would be a UNIverse, a continuation of a theme begun here.)
There are quite a many coherent simple mathematical entities,
Given a set of observations, there can be a number of coherent mathematical entities that fit those observations. Also, some of those coherent mathematical entities may be independent and/or mutually exclusive, giving rise to our notion of many possible but not-simultaneous universes. However, the production of a universe from a void is a completely different context in which ‘false’ and ‘independent’ may not .. exist.
I don’t know how it would go, obviously, but suppose it begins something like this: just a void, so you have the empty set. You have all sets of the empty sets, so your mathematical structure is a little more complex. Then you have more complex relationships between sets, etc.
At what point does an inconsistent fact ever come in? (never)
At what point is an independent fact introduced? (never)
You just have an evolution of complexity, each step derived true relationships from lower level relationships. Eventually, ‘stronger’/‘abundant’ relationships yield the particles we know of, them and the relationships between them define our universe and the rules.
There’s just one universe. A universe that is the deduction from nothing.
Contrari-wise, independent coherent mathematical entities and multiverses would be interesting too.
(We all agree this is metaphysics, right? Which is to say..interesting thought exercises only?)
At what point is an independent fact introduced? (never)
I’m not sure how to interpret this thought experiment, but it seems that you could still produce indistinguishable-from-independent-fact-in-the-eyes-of-in-world-observers -like things.
Like, if we take empty set, set that contains empty set, then form a set that contains all earlier sets, and this way construcy natural numbers, and then produce a function that takes one set and gives it’s “successor”, as in, the next natural number. F(1) = 2, F(11) = 12 and so forth.
This could be taken as “natural, simple world”, where there are no surprises, like, F(15) giving 1337 as a result, or anything. That F(15) = 1337 would count as an independent fact. But obviously rule like could be formulated, and I’m really unsure about what’s there to prevent this “add one expect if 15, give 1337″ rule from happening, given that the original successor function did ‘happen’.
But then again, maybe I just misunderstood, I got kind of an impression that you’re thinking Universe as some sort of limit as length of deduction chains approach infinity, but this idea seems counter-intuitive to me.
I’m currently in yellow/red hat mode for the idea that the theory described above would result in a single universe.
(I thought about moving this comment to a more appropriate thread, but it was too much work. Unless someone picks up on the idea, I’ll let the idea drop for a while and imagine there are multi-verses in order to be more on-page. Anyway, what follows below is my argument for why there would be a UNIverse, a continuation of a theme begun here.)
Given a set of observations, there can be a number of coherent mathematical entities that fit those observations. Also, some of those coherent mathematical entities may be independent and/or mutually exclusive, giving rise to our notion of many possible but not-simultaneous universes. However, the production of a universe from a void is a completely different context in which ‘false’ and ‘independent’ may not .. exist.
I don’t know how it would go, obviously, but suppose it begins something like this: just a void, so you have the empty set. You have all sets of the empty sets, so your mathematical structure is a little more complex. Then you have more complex relationships between sets, etc.
At what point does an inconsistent fact ever come in? (never)
At what point is an independent fact introduced? (never)
You just have an evolution of complexity, each step derived true relationships from lower level relationships. Eventually, ‘stronger’/‘abundant’ relationships yield the particles we know of, them and the relationships between them define our universe and the rules.
There’s just one universe. A universe that is the deduction from nothing.
Contrari-wise, independent coherent mathematical entities and multiverses would be interesting too.
(We all agree this is metaphysics, right? Which is to say..interesting thought exercises only?)
I’m not sure how to interpret this thought experiment, but it seems that you could still produce indistinguishable-from-independent-fact-in-the-eyes-of-in-world-observers -like things.
Like, if we take empty set, set that contains empty set, then form a set that contains all earlier sets, and this way construcy natural numbers, and then produce a function that takes one set and gives it’s “successor”, as in, the next natural number. F(1) = 2, F(11) = 12 and so forth.
This could be taken as “natural, simple world”, where there are no surprises, like, F(15) giving 1337 as a result, or anything. That F(15) = 1337 would count as an independent fact. But obviously rule like could be formulated, and I’m really unsure about what’s there to prevent this “add one expect if 15, give 1337″ rule from happening, given that the original successor function did ‘happen’.
But then again, maybe I just misunderstood, I got kind of an impression that you’re thinking Universe as some sort of limit as length of deduction chains approach infinity, but this idea seems counter-intuitive to me.