I don’t know how I can fail to communicate so consistently.
I suspect it’s because what you are referring to as “EDT” is not what experts in the field use that technical term to mean.
nsheppard-EDT is, as far as I can tell, the second half of CDT. Take a causal model and use the do() operator to create the manipulated subgraph that would result taking possible action (as an intervention). Determine the joint probability distribution from the manipulated subgraph. Condition on observing that action with the joint probability distribution, and calculate the probabilistically-weighted mean utility of the possible outcomes. This is isomorphic to CDT, and so referring to it as EDT leads to confusion.
I suspect it’s because what you are referring to as “EDT” is not what experts in the field use that technical term to mean.
nsheppard-EDT is, as far as I can tell, the second half of CDT. Take a causal model and use the do() operator to create the manipulated subgraph that would result taking possible action (as an intervention). Determine the joint probability distribution from the manipulated subgraph. Condition on observing that action with the joint probability distribution, and calculate the probabilistically-weighted mean utility of the possible outcomes. This is isomorphic to CDT, and so referring to it as EDT leads to confusion.
Whatever. I give up.