My issue isn’t with the complexity of a Turing machine, it’s with the term “accessible.” Universal search may execute every Turing machine, but it also takes adds more than exponential complexity time to do so.
In particular because if there are infinitely many schelling points in the manipulation universe to be manipulated and referenced, then this requires all of that computation to causally precede the simplest such schelling point for any answer that needs to be manipulated!
It’s not clear to me what it actually means for there to exist a schelling point in the manipulation universe that would be used by Solomonoff Induction to get an answer, but my confusion isn’t about (arbitrarily powerful computer) or (schelling point) on their own, it’s about how much computation you can do before each schelling point, while still maintaining the minimality criteria for induction to be manipulated.
My issue isn’t with the complexity of a Turing machine, it’s with the term “accessible.” Universal search may execute every Turing machine, but it also takes adds more than exponential complexity time to do so.
In particular because if there are infinitely many schelling points in the manipulation universe to be manipulated and referenced, then this requires all of that computation to causally precede the simplest such schelling point for any answer that needs to be manipulated!
It’s not clear to me what it actually means for there to exist a schelling point in the manipulation universe that would be used by Solomonoff Induction to get an answer, but my confusion isn’t about (arbitrarily powerful computer) or (schelling point) on their own, it’s about how much computation you can do before each schelling point, while still maintaining the minimality criteria for induction to be manipulated.