This is actually pretty similar to the original function of the CRISPR/CAS9 system in the wild. Wild bacterial CRISPR systems copy short RNA segments complementary to bacteriophage DNA, then use those to target and destroy any phage DNA within the bacteria. So it’s definitely something which could work in principle, and is already used by some bacteria.
That said, at this point it would probably be harder to immunize against a virus using CRISPR-based techniques than using traditional vaccines. Just injecting a bunch of CRISPR protein machinery and bits of coronavirus-complementary RNA directly into the bloodstream wouldn’t really do anything; you’d need to genetically modify human cells to produce the CRISPR machinery themselves.
(Side note: you might be interested in Todd Rider’s DRACO project.)
This is actually pretty similar to the original function of the CRISPR/CAS9 system in the wild. Wild bacterial CRISPR systems copy short RNA segments complementary to bacteriophage DNA, then use those to target and destroy any phage DNA within the bacteria. So it’s definitely something which could work in principle, and is already used by some bacteria.
That said, at this point it would probably be harder to immunize against a virus using CRISPR-based techniques than using traditional vaccines. Just injecting a bunch of CRISPR protein machinery and bits of coronavirus-complementary RNA directly into the bloodstream wouldn’t really do anything; you’d need to genetically modify human cells to produce the CRISPR machinery themselves.
(Side note: you might be interested in Todd Rider’s DRACO project.)