that’s a really good point, and I’m mentally kicking myself right now for not having thought of that. In answer to another comment below yours, I suggested only allowing primitive recursive functions to be entered as input in the second box, which I think would solve the problem (if possibly creating another computational limit at the growth rate of the fastest growing primitive recursive function possible [which I haven’t studied at all tbh, so if you happen to have any further reading on that I’d be quite interested]). Going a bit further with this, while I suggested God limiting us to one bounded language like BlooP to use on the second field, if He instead allowed for any language to be used, but only primitive recursive functions to be run, would we be able to exploit that feature for hypercomputation?
Also, while we’re discussing it, what would be in the space of problems that could be uniquely solved by 2^O(n) compute, but not by “normal” O(n) compute?
that’s a really good point, and I’m mentally kicking myself right now for not having thought of that. In answer to another comment below yours, I suggested only allowing primitive recursive functions to be entered as input in the second box, which I think would solve the problem (if possibly creating another computational limit at the growth rate of the fastest growing primitive recursive function possible [which I haven’t studied at all tbh, so if you happen to have any further reading on that I’d be quite interested]). Going a bit further with this, while I suggested God limiting us to one bounded language like BlooP to use on the second field, if He instead allowed for any language to be used, but only primitive recursive functions to be run, would we be able to exploit that feature for hypercomputation?
Also, while we’re discussing it, what would be in the space of problems that could be uniquely solved by 2^O(n) compute, but not by “normal” O(n) compute?