There’s a continuum between Fermi estimates and more detailed models. At some resolution you’d definitely want to take into account the fact that new data will affect your confidence, but it may not be worth modelling at that resolution unless you think that this is one of the major routes to value.
With the scenario you outline, I think B is under-specified. You just say “more accurate estimates of population size”—in order to get this model to work you need some way of expressing how big a change in accuracy you’re looking at.
I’d also be wary of assuming that the only work that has occurred is the stuff you can directly count. Other scientists working on related problems might have produced a generalisable solution which would work here. To the extent that they haven’t, we should be more pessimistic about your chances of success than we would otherwise.
Thank you. By B=20% I mean that I will be 20% more certain of my estimate of the true number of single plants when I find a new population, count the stalks and roughly check how clustered they are, compared to ‘how confident I would be without this research’.
I will certainly look into works on other plants.
I think people just don’t bother. We don’t need to know exactly how many specimens are in a spot if we can say that mowing makes the environment more favourable to stalk production. We cannot really say much about genetic diversity and long-term conservation strategies, but considering that nobody is going to implement those strategies… It is, however, of some interest as to how such an ancient plant ‘games the system’ of the world we have—it is largely inbred, always must live with a fungus of some specificity, always ‘on the move’ (shrubbery incursion makes it die off, so it must produce spores before its window of opportunity is closed), glaciations have nudged it into retreats… and it still survives. It’s just an awesome little thing. *end of rant:)
There’s a continuum between Fermi estimates and more detailed models. At some resolution you’d definitely want to take into account the fact that new data will affect your confidence, but it may not be worth modelling at that resolution unless you think that this is one of the major routes to value.
With the scenario you outline, I think B is under-specified. You just say “more accurate estimates of population size”—in order to get this model to work you need some way of expressing how big a change in accuracy you’re looking at.
I’d also be wary of assuming that the only work that has occurred is the stuff you can directly count. Other scientists working on related problems might have produced a generalisable solution which would work here. To the extent that they haven’t, we should be more pessimistic about your chances of success than we would otherwise.
Thank you. By B=20% I mean that I will be 20% more certain of my estimate of the true number of single plants when I find a new population, count the stalks and roughly check how clustered they are, compared to ‘how confident I would be without this research’. I will certainly look into works on other plants. I think people just don’t bother. We don’t need to know exactly how many specimens are in a spot if we can say that mowing makes the environment more favourable to stalk production. We cannot really say much about genetic diversity and long-term conservation strategies, but considering that nobody is going to implement those strategies… It is, however, of some interest as to how such an ancient plant ‘games the system’ of the world we have—it is largely inbred, always must live with a fungus of some specificity, always ‘on the move’ (shrubbery incursion makes it die off, so it must produce spores before its window of opportunity is closed), glaciations have nudged it into retreats… and it still survives. It’s just an awesome little thing. *end of rant:)