Judgment in Managerial Decision Making says that (subconscious) misapplication of e.g. the representativeness heuristic causes insensitivity to base rates and to sample size, failure to reason about probabilities correctly, failure to consider regression to the mean, and the conjunction fallacy. My model of this is that representativeness / availability / confirmation bias work off of a mechanism somewhat similar to attention in neural networks: due to how the brain performs time-limited search, more salient/recent memories get prioritized for recall.
The availability heuristic goes wrong when our saliency-weighted perceptions of the frequency of events is a biased estimator of the real frequency, or maybe when we just happen to be extrapolating off of a very small sample size. Concepts get inappropriately activated in our mind, and we therefore reason incorrectly. Attention also explains anchoring: you can more readily bring to mind things related to your anchor due to salience.
The case for confirmation bias seems to be a little more involved: first, we had evolutionary pressure to win arguments, which means our search is meant to find supportive arguments and avoid even subconsciously signalling that we are aware of the existence of counterarguments. This means that those supportive arguments feel salient, and we (perhaps by “design”) get to feel unbiased—we aren’t consciously discarding evidence, we’re just following our normal search/reasoning process! This is what our search algorithm feels like from the inside.
This reasoning feels clicky, but I’m just treating it as an interesting perspective for now.
Judgment in Managerial Decision Making says that (subconscious) misapplication of e.g. the representativeness heuristic causes insensitivity to base rates and to sample size, failure to reason about probabilities correctly, failure to consider regression to the mean, and the conjunction fallacy. My model of this is that representativeness / availability / confirmation bias work off of a mechanism somewhat similar to attention in neural networks: due to how the brain performs time-limited search, more salient/recent memories get prioritized for recall.
The availability heuristic goes wrong when our saliency-weighted perceptions of the frequency of events is a biased estimator of the real frequency, or maybe when we just happen to be extrapolating off of a very small sample size. Concepts get inappropriately activated in our mind, and we therefore reason incorrectly. Attention also explains anchoring: you can more readily bring to mind things related to your anchor due to salience.
The case for confirmation bias seems to be a little more involved: first, we had evolutionary pressure to win arguments, which means our search is meant to find supportive arguments and avoid even subconsciously signalling that we are aware of the existence of counterarguments. This means that those supportive arguments feel salient, and we (perhaps by “design”) get to feel unbiased—we aren’t consciously discarding evidence, we’re just following our normal search/reasoning process! This is what our search algorithm feels like from the inside.
This reasoning feels clicky, but I’m just treating it as an interesting perspective for now.