I had an intuition that attainable utility preservation (RL but you maintain your ability to achieve other goals) points at a broader template for regularization. AUP regularizes the agent’s optimal policy to be more palatable towards a bunch of different goals we may wish we had specified. I hinted at the end of Towards a New Impact Measure that the thing-behind-AUP might produce interesting ML regularization techniques.
This hunch was roughly correct; Model-Agnostic Meta-Learning tunes the network parameters such that they can be quickly adapted to achieve low loss on other tasks (the problem of few-shot learning). The parameters are not overfit on the scant few data points to which the parameters are adapted, which is also interesting.
I had an intuition that attainable utility preservation (RL but you maintain your ability to achieve other goals) points at a broader template for regularization. AUP regularizes the agent’s optimal policy to be more palatable towards a bunch of different goals we may wish we had specified. I hinted at the end of Towards a New Impact Measure that the thing-behind-AUP might produce interesting ML regularization techniques.
This hunch was roughly correct; Model-Agnostic Meta-Learning tunes the network parameters such that they can be quickly adapted to achieve low loss on other tasks (the problem of few-shot learning). The parameters are not overfit on the scant few data points to which the parameters are adapted, which is also interesting.