This is, to put it bluntly but simply, complete bullshit.
Anyone with actual astronomy experience will literally laugh at that paper. It is about 65% irrelevant padding that provides nothing towards their thesis and is there to look intimidating and impressive.
Thermonuclear bombs run off deuterium fusion—proton-proton reactions have such a low cross-section and rate that you really can’t get it to happen at their temperatures. And the thermonuclear explosion itself only uses up some of its TIGHTLY PACKED SOLID fuel right next to a fission explosion before it rarifies to the point that it just can’t keep reacting. To fuse protons you need gravitational confinement, not inertial confinement.
Stars are well within a range of conditions where they exhibit negative feedback. That is, if they heat up, they expand and the adiabatic expansion cools them to a point that they produce less energy.
On top of that, even if you accelerated the rate of fusion temporarily in part of a star… so what? The heat produced per unit volume of the sun’s core is less than that of a compost heap and orders of magnitude less than human flesh. At the heat capacity of over a ton of hydrogen plasma per cubic meter, a temporary increase in heat output of a small region isn’t destablizing anything.
On top of that, the last two points refer to the core. They are talking about mucking with the surface. If you heated up part of a star not normally hot enough to cause fusion, even if you managed to heat up it would just expand away and mix.
On top of that, far more energetic events than nuclear explosions happen to stars all the time. Magnetic events on the surface of the sun regularly relase more energy than all of Earth’s nuclear arsenals at once. There are stars with gigatons per second of gas pulled off a puffed-up companion star falling onto a small spot on their surface at 800 km/s, where that spot glows X-ray hot and outshines the rest of the star. There are sun-sized stars that we can tell by their lithium content (which is burned up by nuclear reactions at much lower temperatures than other elements throughout the stellar volume) ate entire gas giants that fell into them at hundreds of kilometers per second within the last 50 million years.
And they compare the approach of a solid object across millions of kilometers in which the blackbody temperature exceeds 2500 C and gas at millions of degrees streams past, and at the surface falling at 600 km/s through 5800K gas, to the galilleo probe which fell through regular gas for 70 seconds at 60 km/s (and burned away more than half its mass in the process)?
I don’t care if this was authored by Isaac Newton, it’s utter bullshit and the idea of someone taking it seriously confuses me.
I don’t care if this was authored by Isaac Newton, it’s utter bullshit and the idea of someone taking it seriously confuses me.
That is because you don’t grasp, on a gut level, that most other people know less physics than you. (Philosophy major here, I didn’t know what to think of this paper until this thread.)
On top of that, even if you accelerated the rate of fusion temporarily in part of a star… so what? The heat produced per unit volume of the sun’s core is less than that of a compost heap and orders of magnitude less than human flesh.
Really? Fascinating. I kind of expected it to be more than that. But then I suppose that would mean it would inevitably burn up in less than billions of years so that makes sense.
I don’t care if this was authored by Isaic Newton, it’s utter bullshit and the idea of someone taking it seriously confuses me.
He did author some bullshit, now that you mention it.
I suppose that would mean it would inevitably burn up in less than billions of years so that makes sense.
Yeah. The sun is just so hot due to its huge mass to surface area ratio—so much volume per square meter of emitting area. The total heat energy inside the sun at any given moment is also equal to several hundred thousand years worth of its fusion output. You could somehow shut down the fusion and never have anyone else in the solar system notice a thing for kiloyears unless they had a neutrino detector, until it starts to slooooooooowly shrink and redden, taking millions of years...
The only way to increase the fusion rate is to increase the temperature or pressure (or both at the same time which is more likely). But the heat contributed to a volume by fusion is so ridiculously tiny over any timescale that anything could inject heat into it over that once the heat being used to increase the fusion rate went away the fusion would never be able to sustain the higher temperature that was causing it. The gas would expand under the increased temperature and pressure, and undo whatever was being done to it.
There are variable stars that pulsate on human timescales, but those don’t happen due to pulsations in the fusion rate. Instead they are mostly old red giants with puffed up cool outer atmospheres where some ions can actually hold onto a few electrons. The outer atmosphere expands outwards and cools, the ions grab a few electrons and become more transparent due to fewer charged particles to intercept photons, the atmosphere then loses energy it cant intercept and shrinks, it heats up from adiabatic contraction, re-ionizes, becomes more opaque, heats up more and expands, rinse, repeat. Only the outer layers, a tiny fraction of the mass, are affected. Other stars pulsate via other mechanisms too but thats the most common.
The only times that fusion changes on human timescales are in red giants that have a kernel of degenerate matter at the center, held up only by electron degeneracy (AKA the pauli exclusion principle). That is because in that case, pressure is a constant rather than being a function of temperature and the negative feedback I mentioned cannot operate because as the core heats up it fails to expand. This is what gives you ‘helium flashes’ in red giants where they suddenly put out a few hundred thousand years worth of output in ten seconds… at the center of a solar mass or more of gas that already contained nearly that much heat energy to start with, such that it takes hundreds of thousands of years for the doubled heat energy content to work its way out to the surface and bleed out into space.
He did author some bullshit, now that you mention it.
I can’t wait until 2060 (if I survive that long). We can have the “Newton was WRONG?!” party, and then start planning the April 5th, 2063 “Vulcans Welcome” party.
This is, to put it bluntly but simply, complete bullshit.
Anyone with actual astronomy experience will literally laugh at that paper. It is about 65% irrelevant padding that provides nothing towards their thesis and is there to look intimidating and impressive.
Thermonuclear bombs run off deuterium fusion—proton-proton reactions have such a low cross-section and rate that you really can’t get it to happen at their temperatures. And the thermonuclear explosion itself only uses up some of its TIGHTLY PACKED SOLID fuel right next to a fission explosion before it rarifies to the point that it just can’t keep reacting. To fuse protons you need gravitational confinement, not inertial confinement.
Stars are well within a range of conditions where they exhibit negative feedback. That is, if they heat up, they expand and the adiabatic expansion cools them to a point that they produce less energy.
On top of that, even if you accelerated the rate of fusion temporarily in part of a star… so what? The heat produced per unit volume of the sun’s core is less than that of a compost heap and orders of magnitude less than human flesh. At the heat capacity of over a ton of hydrogen plasma per cubic meter, a temporary increase in heat output of a small region isn’t destablizing anything.
On top of that, the last two points refer to the core. They are talking about mucking with the surface. If you heated up part of a star not normally hot enough to cause fusion, even if you managed to heat up it would just expand away and mix.
On top of that, far more energetic events than nuclear explosions happen to stars all the time. Magnetic events on the surface of the sun regularly relase more energy than all of Earth’s nuclear arsenals at once. There are stars with gigatons per second of gas pulled off a puffed-up companion star falling onto a small spot on their surface at 800 km/s, where that spot glows X-ray hot and outshines the rest of the star. There are sun-sized stars that we can tell by their lithium content (which is burned up by nuclear reactions at much lower temperatures than other elements throughout the stellar volume) ate entire gas giants that fell into them at hundreds of kilometers per second within the last 50 million years.
And they compare the approach of a solid object across millions of kilometers in which the blackbody temperature exceeds 2500 C and gas at millions of degrees streams past, and at the surface falling at 600 km/s through 5800K gas, to the galilleo probe which fell through regular gas for 70 seconds at 60 km/s (and burned away more than half its mass in the process)?
I don’t care if this was authored by Isaac Newton, it’s utter bullshit and the idea of someone taking it seriously confuses me.
That is because you don’t grasp, on a gut level, that most other people know less physics than you. (Philosophy major here, I didn’t know what to think of this paper until this thread.)
Really? Fascinating. I kind of expected it to be more than that. But then I suppose that would mean it would inevitably burn up in less than billions of years so that makes sense.
He did author some bullshit, now that you mention it.
Yeah. The sun is just so hot due to its huge mass to surface area ratio—so much volume per square meter of emitting area. The total heat energy inside the sun at any given moment is also equal to several hundred thousand years worth of its fusion output. You could somehow shut down the fusion and never have anyone else in the solar system notice a thing for kiloyears unless they had a neutrino detector, until it starts to slooooooooowly shrink and redden, taking millions of years...
The only way to increase the fusion rate is to increase the temperature or pressure (or both at the same time which is more likely). But the heat contributed to a volume by fusion is so ridiculously tiny over any timescale that anything could inject heat into it over that once the heat being used to increase the fusion rate went away the fusion would never be able to sustain the higher temperature that was causing it. The gas would expand under the increased temperature and pressure, and undo whatever was being done to it.
There are variable stars that pulsate on human timescales, but those don’t happen due to pulsations in the fusion rate. Instead they are mostly old red giants with puffed up cool outer atmospheres where some ions can actually hold onto a few electrons. The outer atmosphere expands outwards and cools, the ions grab a few electrons and become more transparent due to fewer charged particles to intercept photons, the atmosphere then loses energy it cant intercept and shrinks, it heats up from adiabatic contraction, re-ionizes, becomes more opaque, heats up more and expands, rinse, repeat. Only the outer layers, a tiny fraction of the mass, are affected. Other stars pulsate via other mechanisms too but thats the most common.
The only times that fusion changes on human timescales are in red giants that have a kernel of degenerate matter at the center, held up only by electron degeneracy (AKA the pauli exclusion principle). That is because in that case, pressure is a constant rather than being a function of temperature and the negative feedback I mentioned cannot operate because as the core heats up it fails to expand. This is what gives you ‘helium flashes’ in red giants where they suddenly put out a few hundred thousand years worth of output in ten seconds… at the center of a solar mass or more of gas that already contained nearly that much heat energy to start with, such that it takes hundreds of thousands of years for the doubled heat energy content to work its way out to the surface and bleed out into space.
I can’t wait until 2060 (if I survive that long). We can have the “Newton was WRONG?!” party, and then start planning the April 5th, 2063 “Vulcans Welcome” party.