(Oops I just noticed that I had missed one of your questions in my earlier responses)
I have the same question about whatever mechanism approximates Bayesian priors—I keep encountering vague descriptions of it being encoded in dopamine distributions, but I haven’t found a good explanation of how that might actually work.
I don’t think there’s anything to Bayesian priors beyond the general “society of compositional generative models” framework. For example, we have a prior that if someone runs towards a bird, it will fly away. There’s a corresponding generative model: in that model, first there’s a person running towards a bird, and then the bird is flying away. All of us have that generative model prominently in our brains, having seen it happen a bunch of times in the past. So when we see a person running towards a bird, that generative model gets activated, and it then sends a prediction that the bird is about to fly away.
(Right? Or sorry if I’m misunderstanding your question.)
(Not sure what you saw about dopamine distributions. I think everyone agrees that dopamine distributions are relevant to reward prediction, which I guess is a special case of a prior. I didn’t think it was relevant for non-reward-related-priors, like the above prior above bird behavior, but I don’t really know, I’m pretty hazy on my neurotransmitters, and each neurotransmitter seems to do lots of unrelated things.)
(Oops I just noticed that I had missed one of your questions in my earlier responses)
I don’t think there’s anything to Bayesian priors beyond the general “society of compositional generative models” framework. For example, we have a prior that if someone runs towards a bird, it will fly away. There’s a corresponding generative model: in that model, first there’s a person running towards a bird, and then the bird is flying away. All of us have that generative model prominently in our brains, having seen it happen a bunch of times in the past. So when we see a person running towards a bird, that generative model gets activated, and it then sends a prediction that the bird is about to fly away.
(Right? Or sorry if I’m misunderstanding your question.)
(Not sure what you saw about dopamine distributions. I think everyone agrees that dopamine distributions are relevant to reward prediction, which I guess is a special case of a prior. I didn’t think it was relevant for non-reward-related-priors, like the above prior above bird behavior, but I don’t really know, I’m pretty hazy on my neurotransmitters, and each neurotransmitter seems to do lots of unrelated things.)