For the record, I do actually believe that. I was trying to state what seemed to be a problem in the STV framework as I was understanding it.
In my picture, the brainstem communicates valence to the neocortex via a midbrain dopamine signal (one particular signal of the many), and sometimes communicates the suggested cause / remediation via executing orienting reactions (saccading, moving your head, etc.—the brainstem can do this by itself), and sending acetylcholine to the corresponding parts of your cortex, which then override the normal top-down attention mechanism and force attention onto whatever your brainstem demands. For example, when your finger hurts a lot, it’s really hard to think about anything else, and my tentative theory is that the mechanism here involves the brainstem sending acetylcholine to the finger-pain-area of the insular cortex. (To be clear, this is casual speculation that I haven’t thought too hard about or looked into much.)
For the record, I do actually believe that. I was trying to state what seemed to be a problem in the STV framework as I was understanding it.
In my picture, the brainstem communicates valence to the neocortex via a midbrain dopamine signal (one particular signal of the many), and sometimes communicates the suggested cause / remediation via executing orienting reactions (saccading, moving your head, etc.—the brainstem can do this by itself), and sending acetylcholine to the corresponding parts of your cortex, which then override the normal top-down attention mechanism and force attention onto whatever your brainstem demands. For example, when your finger hurts a lot, it’s really hard to think about anything else, and my tentative theory is that the mechanism here involves the brainstem sending acetylcholine to the finger-pain-area of the insular cortex. (To be clear, this is casual speculation that I haven’t thought too hard about or looked into much.)