Seems like we broadly agree on most points here, AFAICT. Thanks again for your engagement. :)
the fact that animals do reliably evolve to track the key fitness affordances in their environments (e.g. predators, prey, mates, offspring, kin, herds, dangers) suggests that the specifics of neurogenetic development don’t in fact impose much of a constraint on psychological evolution.
This evidence shows that evolution is somehow able to adapt to relevant affordances, but doesn’t (to my eye) discriminate strongly between the influence being mediated by selection on high-level cognitive properties.
For example, how strongly do these observations discriminate between worlds where evolution was or wasn’t constrained by having or not having the ability to directly select adaptations over high-level cognitive properties (like “afraid of death in the abstract”)? Would we notice the difference between those worlds? What amount of affordance-tailoring would we expect in worlds where evolution was able to perform such selection, compared to worlds where it wasn’t?
It seems to me that we wouldn’t notice the difference. There are many dimensions of affordance-tailoring, and it’s harder to see affordances that weren’t successfully selected for.
For a totally made up and naive but illustrative example, if adult frogs reliably generalize to model that a certain kind of undercurrent is dangerous (ie leads to predicted-death), but that undercurrent doesn’t leave sensory-definable signs, evolution might not have been able to select frogs to avoid that particular kind of undercurrent, even though the frogs model the undercurrent in their world model. If the undercurrent decreases fitness by enough, perhaps frogs are selected to be averse towards necessary conditions for waters having those undercurrents—maybe those are sensory-definable (or otherwise definable in terms of eg cortisol predictions).
But we might just see a frog which is selected for a huge range of other affordances, and not consider that evolution failed with the undercurrent-affordance. (The important point here doesn’t have to do with frogs, and I expect it to stand even if the example is biologically naive.)
Seems like we broadly agree on most points here, AFAICT. Thanks again for your engagement. :)
This evidence shows that evolution is somehow able to adapt to relevant affordances, but doesn’t (to my eye) discriminate strongly between the influence being mediated by selection on high-level cognitive properties.
For example, how strongly do these observations discriminate between worlds where evolution was or wasn’t constrained by having or not having the ability to directly select adaptations over high-level cognitive properties (like “afraid of death in the abstract”)? Would we notice the difference between those worlds? What amount of affordance-tailoring would we expect in worlds where evolution was able to perform such selection, compared to worlds where it wasn’t?
It seems to me that we wouldn’t notice the difference. There are many dimensions of affordance-tailoring, and it’s harder to see affordances that weren’t successfully selected for.
For a totally made up and naive but illustrative example, if adult frogs reliably generalize to model that a certain kind of undercurrent is dangerous (ie leads to predicted-death), but that undercurrent doesn’t leave sensory-definable signs, evolution might not have been able to select frogs to avoid that particular kind of undercurrent, even though the frogs model the undercurrent in their world model. If the undercurrent decreases fitness by enough, perhaps frogs are selected to be averse towards necessary conditions for waters having those undercurrents—maybe those are sensory-definable (or otherwise definable in terms of eg cortisol predictions).
But we might just see a frog which is selected for a huge range of other affordances, and not consider that evolution failed with the undercurrent-affordance. (The important point here doesn’t have to do with frogs, and I expect it to stand even if the example is biologically naive.)