However, the information content from the genome is bounded above by the information content of the genome itself, which is only about 3 billion base pairs. So, most of the brain must be learned from scratch.
Can you say more on this? This seems invalid to me. This seems like, you have a program whose specification is a few GB, but that doesn’t mean the program can’t specify more than 3GB of meaningful data in the final brain—just that it’s not specifying data with K-complexity greater than eg 4GB.
Quintin & Alex—this is a very tricky issue that’s been discussed in evolutionary psychology since the late 1980s.
Way back then, Leda Cosmides & John Tooby pointed out that the human genome will ‘offload’ any information it can that’s needed for brain development onto any environmental regularities that can be expected to be available externally, out in the world. For example, the genome doesn’t need to specify everything about time, space, and causality that might be relevant in reliably building a brain that can do intuitive physics—as long as kids can expect that they’ll encounter objects and events that obey basic principles of time, space, and causality. In other words, the ‘information content’ of the mature brain represents the genome taking maximum advantage of statistical regularities in the physical and social worlds, in order to build reliably functioning adult adaptations. See, for example, their writings here and here.
Now, should we call that kind of environmentally-driven calibration and scaffolding of evolved adaptations a form of ‘learning’? It is in some ways, but in other ways, the term ‘learning’ would distract attention away from the fact that we’re talking about a rich suite of evolved adaptations that are adapting to cross-generational regularities in the world (e.g. gravity, time, space, causality, the structure of optic flow in visual input, and many game-theoretic regularities of social and sexual interaction) -- rather than to novel variants or to cultural traditions.
Also, if we take such co-determination of brain structure by genome and environmental regularities as just another form of ‘learning’, we’re tempted to ignore the last several decades of evolutionary functional analysis of the psychological adaptations that do reliably develop in mature adults across thousands of species. In practice, labeling something ‘learned’ tends to foreclose any evolutionary-functional analysis of why it works the way it works. (For example, the still-common assumption that jealousy is a ‘learned behavior’ obscured the functional differences and sex differences between sexual jealousy and resource/emotional jealousy).
As an analogy, the genome specifies some details about how the lungs grow—but lung growth depends on environmental regularities such as the existence of oxygen and nitrogen at certain concentrations and pressures in the atmosphere; without those gasses, lungs don’t grow right. Does that mean the lungs ‘learn’ their structure from atmosphere gasses rather than just from the information in the genome? I think that would be a peculiar way to look at it.
The key issue is that there’s a fundamental asymmetry between the information in the genome and the information in the environment: the genome adapts to promote the reliable development of complex functional adaptations that take advantage of environmental regularities, but the environmental regularities doesn’t adapt in that way to help animals survive and reproduce (e.g. time, gravity, causality, and optic flow don’t change to make organismic development easier or more reliable).
Thus, if we’re serious about understanding the functional design of human brains, minds, and values, I think it’s often more fruitful to focus on the genomic side of development, rather than the environmental side (or the ‘learning’ side, as usually construed). (Of course, with the development of cumulative cultural traditions in our species in the last hundred thousand years or so, a lot more adaptively useful information is stored out in the environment—but most of the fundamental human values that we’d want our AIs to align with are shared across most mammalian species, and are not unique to humans with culture.)
Can you say more on this? This seems invalid to me. This seems like, you have a program whose specification is a few GB, but that doesn’t mean the program can’t specify more than 3GB of meaningful data in the final brain—just that it’s not specifying data with K-complexity greater than eg 4GB.
Quintin & Alex—this is a very tricky issue that’s been discussed in evolutionary psychology since the late 1980s.
Way back then, Leda Cosmides & John Tooby pointed out that the human genome will ‘offload’ any information it can that’s needed for brain development onto any environmental regularities that can be expected to be available externally, out in the world. For example, the genome doesn’t need to specify everything about time, space, and causality that might be relevant in reliably building a brain that can do intuitive physics—as long as kids can expect that they’ll encounter objects and events that obey basic principles of time, space, and causality. In other words, the ‘information content’ of the mature brain represents the genome taking maximum advantage of statistical regularities in the physical and social worlds, in order to build reliably functioning adult adaptations. See, for example, their writings here and here.
Now, should we call that kind of environmentally-driven calibration and scaffolding of evolved adaptations a form of ‘learning’? It is in some ways, but in other ways, the term ‘learning’ would distract attention away from the fact that we’re talking about a rich suite of evolved adaptations that are adapting to cross-generational regularities in the world (e.g. gravity, time, space, causality, the structure of optic flow in visual input, and many game-theoretic regularities of social and sexual interaction) -- rather than to novel variants or to cultural traditions.
Also, if we take such co-determination of brain structure by genome and environmental regularities as just another form of ‘learning’, we’re tempted to ignore the last several decades of evolutionary functional analysis of the psychological adaptations that do reliably develop in mature adults across thousands of species. In practice, labeling something ‘learned’ tends to foreclose any evolutionary-functional analysis of why it works the way it works. (For example, the still-common assumption that jealousy is a ‘learned behavior’ obscured the functional differences and sex differences between sexual jealousy and resource/emotional jealousy).
As an analogy, the genome specifies some details about how the lungs grow—but lung growth depends on environmental regularities such as the existence of oxygen and nitrogen at certain concentrations and pressures in the atmosphere; without those gasses, lungs don’t grow right. Does that mean the lungs ‘learn’ their structure from atmosphere gasses rather than just from the information in the genome? I think that would be a peculiar way to look at it.
The key issue is that there’s a fundamental asymmetry between the information in the genome and the information in the environment: the genome adapts to promote the reliable development of complex functional adaptations that take advantage of environmental regularities, but the environmental regularities doesn’t adapt in that way to help animals survive and reproduce (e.g. time, gravity, causality, and optic flow don’t change to make organismic development easier or more reliable).
Thus, if we’re serious about understanding the functional design of human brains, minds, and values, I think it’s often more fruitful to focus on the genomic side of development, rather than the environmental side (or the ‘learning’ side, as usually construed). (Of course, with the development of cumulative cultural traditions in our species in the last hundred thousand years or so, a lot more adaptively useful information is stored out in the environment—but most of the fundamental human values that we’d want our AIs to align with are shared across most mammalian species, and are not unique to humans with culture.)