convergence might literally never occur if the machine just doesn’t have the computational resources to contain such an upload
I think that in embedded settings (with a bounded version of Solomonoff induction) convergence may never occur, even in the limit as the amount of compute that is used for executing the agent goes to infinity. Suppose the observation history contains sensory data that reveals the probability distribution that the agent had, in the last time step, for the next number it’s going to see in the target sequence. Now consider the program that says: “if the last number was predicted by the agent to be 0 with probability larger than 1−2−1010 then the next number is 1; otherwise it is 0.” Since it takes much less than 1010 bits to write that program, the agent will never predict two times in a row that the next number is 0 with probability larger than 1−2−1010 (after observing only 0s so far).
I think that in embedded settings (with a bounded version of Solomonoff induction) convergence may never occur, even in the limit as the amount of compute that is used for executing the agent goes to infinity. Suppose the observation history contains sensory data that reveals the probability distribution that the agent had, in the last time step, for the next number it’s going to see in the target sequence. Now consider the program that says: “if the last number was predicted by the agent to be 0 with probability larger than 1−2−1010 then the next number is 1; otherwise it is 0.” Since it takes much less than 1010 bits to write that program, the agent will never predict two times in a row that the next number is 0 with probability larger than 1−2−1010 (after observing only 0s so far).