Ah, that’s a good point—to have a constant utility function over time, things have to look proportionately the same at any time, so if there’s discounting it should be exponential. So I agree, this post is an argument against making strict utility maximizers with constant utility functions and also discounting. So I guess the options are to have either non-constant utility functions or no discounting. (random links!)
It seems very difficult to argue for a “flat” discount function, even if (as I can do only with some difficulty) one sees things from a utilitarian standpoint: I am not indifferent between gaining 1 utilon right away, versus gaining 1 utilon in one hundred years.
Probing to see where this intuition comes from, the first answer seems to be “because I’m not at all sure I’ll still be around in one hundred years”. The farther in the future the consequences of a present decision, the more uncertain they are.
Ah, that’s a good point—to have a constant utility function over time, things have to look proportionately the same at any time, so if there’s discounting it should be exponential. So I agree, this post is an argument against making strict utility maximizers with constant utility functions and also discounting. So I guess the options are to have either non-constant utility functions or no discounting. (random links!)
It seems very difficult to argue for a “flat” discount function, even if (as I can do only with some difficulty) one sees things from a utilitarian standpoint: I am not indifferent between gaining 1 utilon right away, versus gaining 1 utilon in one hundred years.
Probing to see where this intuition comes from, the first answer seems to be “because I’m not at all sure I’ll still be around in one hundred years”. The farther in the future the consequences of a present decision, the more uncertain they are.