I agree that in situations where A only has outgoing arrows, p(s | do(a)) = p(s | a), but this class of situations is not the “Newcomb-like” situations.
What I meant to say is that the situations where A only has outgoing arrows are all not Newcomb-like.
Maybe we just disagree on what “Newcomb-like” means? To me what makes a situation “Newcomb-like” is your decision algorithm influencing the world through something other than your decision (as happens in the Newcomb problem via Omega’s prediction). In smoking lesion, this does not happen, your decision algorithm only influences the world via your action, so it’s not “Newcomb-like” to me.
Ah, okay. Yes, in that case, it seems to be only a terminological dispute. As I say in the post, I would define Newcomb-like-ness via a disagreement between EDT and CDT which can mean either that they disagree about what the right decision is, or, more naturally, that their probabilities diverge. (In the latter case, the statement you commented on is true by definition and in the former case it is false for the reason I mentioned in my first reply.) So, I would view the Smoking lesion as a Newcomb-like problem (ignoring the tickle defense).
What I meant to say is that the situations where A only has outgoing arrows are all not Newcomb-like.
Ah, okay. Yes, in that case, it seems to be only a terminological dispute. As I say in the post, I would define Newcomb-like-ness via a disagreement between EDT and CDT which can mean either that they disagree about what the right decision is, or, more naturally, that their probabilities diverge. (In the latter case, the statement you commented on is true by definition and in the former case it is false for the reason I mentioned in my first reply.) So, I would view the Smoking lesion as a Newcomb-like problem (ignoring the tickle defense).