The point was to outlaw artificial molecular assemblers like Drexler described in Engines of Creation. Think of maybe something like bacteria but with cell walls made of diamond. They might be hard to deal with once released into the wild. Diamond is just carbon, so they could potentially consume carbon-based life, but no natural organism could eat them. This is the “ecophagy” scenario.
But, I still think this is a fair objection. Some paths to molecular nanotechnology might go through bio-engineering, the so-called “wet nanotechnology” approach. We’d start with something like a natural bacterium, and then gradually replace components of the cell with synthetic chemicals, like amino acid analogues or extra base pairs or codons, which lets us work in an expanded universe of “proteins” that might be easier to engineer as well as having capabilities natural biology couldn’t match. This kind of thing is already starting to happen. At what point does the law against self-replication kick in? The wet path is infeasible without it, at least early on.
The point was to outlaw artificial molecular assemblers like Drexler described in Engines of Creation.
Not outlaw. Prohibit “free floating” ones that can work without any further input (besides raw materials). Allowed assemblers would be connected via network ports to a host computer system that has the needed digital files, kept in something that is large enough for humans to see it/break it with a fire axe or shotgun.
Note that making bacteria with gene knockouts so they can’t replicate solely on their own, but have to be given specific amino acids in a nutrient broth, would be a way to retain control if you needed to do it the ‘wet’ way.
The law against self replication is the same testable principle, actually—putting the gene knockouts back would be breaking the law because each wet modified bacteria has all the components in itself to replicate itself again.
The point was to outlaw artificial molecular assemblers like Drexler described in Engines of Creation. Think of maybe something like bacteria but with cell walls made of diamond. They might be hard to deal with once released into the wild. Diamond is just carbon, so they could potentially consume carbon-based life, but no natural organism could eat them. This is the “ecophagy” scenario.
But, I still think this is a fair objection. Some paths to molecular nanotechnology might go through bio-engineering, the so-called “wet nanotechnology” approach. We’d start with something like a natural bacterium, and then gradually replace components of the cell with synthetic chemicals, like amino acid analogues or extra base pairs or codons, which lets us work in an expanded universe of “proteins” that might be easier to engineer as well as having capabilities natural biology couldn’t match. This kind of thing is already starting to happen. At what point does the law against self-replication kick in? The wet path is infeasible without it, at least early on.
The point was to outlaw artificial molecular assemblers like Drexler described in Engines of Creation.
Not outlaw. Prohibit “free floating” ones that can work without any further input (besides raw materials). Allowed assemblers would be connected via network ports to a host computer system that has the needed digital files, kept in something that is large enough for humans to see it/break it with a fire axe or shotgun.
Note that making bacteria with gene knockouts so they can’t replicate solely on their own, but have to be given specific amino acids in a nutrient broth, would be a way to retain control if you needed to do it the ‘wet’ way.
The law against self replication is the same testable principle, actually—putting the gene knockouts back would be breaking the law because each wet modified bacteria has all the components in itself to replicate itself again.