life on earth is more than likely stuck at a local maxima among the set of all possible self-replicating nanorobotic systems.
The grey goo scenario posits you could build tiny fully artificial nanotechnological ‘cells’, made of more durable and reliable parts, that could be closer to the global maxima for self-replicating nanorobotic systems.
These would then outcompete all life, bacteria included, and convert the biosphere to an ocean of copies of this single system. People imagine each cellular unit might be made of metal, hence it would look grey to the naked eye, hence ‘grey goo’. (I won’t speculate how they might be constructed, except to note that you would use AI agents to find designs for these machines. The AI agents would do most of their exploring in a simulation and some exploring using a vast array of prototype ‘nanoforges’ that are capable of assembling test components and full designs. So the AI agents would be capable of considering any known element and any design pattern known at the time or discovered in the process, then they would be capable of combining these ideas into possible ‘global maxima’ designs. This sharing of information—where any piece from any prototype can be adapted and rescaled to be used in a different new prototype—is something nature can’t do with conventional evolution—hence it could be many times faster )
I didn’t create this rule. But succinctly:
life on earth is more than likely stuck at a local maxima among the set of all possible self-replicating nanorobotic systems.
The grey goo scenario posits you could build tiny fully artificial nanotechnological ‘cells’, made of more durable and reliable parts, that could be closer to the global maxima for self-replicating nanorobotic systems.
These would then outcompete all life, bacteria included, and convert the biosphere to an ocean of copies of this single system. People imagine each cellular unit might be made of metal, hence it would look grey to the naked eye, hence ‘grey goo’. (I won’t speculate how they might be constructed, except to note that you would use AI agents to find designs for these machines. The AI agents would do most of their exploring in a simulation and some exploring using a vast array of prototype ‘nanoforges’ that are capable of assembling test components and full designs. So the AI agents would be capable of considering any known element and any design pattern known at the time or discovered in the process, then they would be capable of combining these ideas into possible ‘global maxima’ designs. This sharing of information—where any piece from any prototype can be adapted and rescaled to be used in a different new prototype—is something nature can’t do with conventional evolution—hence it could be many times faster )