Very simple. To prove it for arbitrary number of values, you just need to prove that h_i being true increases its expected “probability to be assigned” after measurement for each i.
If you define T as h_i and F as NOT h_i, you just reduced the problem to two values version.
I had already proved it for two values of H before I contracted Sellke. How easily does this proof generalize to multiple values of H?
Very simple. To prove it for arbitrary number of values, you just need to prove that h_i being true increases its expected “probability to be assigned” after measurement for each i.
If you define T as h_i and F as NOT h_i, you just reduced the problem to two values version.