Why would we need more research to work out that the simulation hypothesis is a bad idea? Computational universality implies that if we were being simulated on a computer, it would be impossible for us to know about the underlying hardware. Any hardware that implements a universal set of computational gates can support universal computation. There are lots of different kinds of universal gates, so you can’t tell what gates are being used by looking at the results of a computation. So the simulation hypothesis does no work in explaining what we observe. The simulation hypothesis also implies we can’t understand the real laws of physics, the physics of the simulator, since no experiment we conduct can tell us anything about the hardware. Another problem: the simulation might be programmed to change the laws of physics arbitrarily so it ruins all of our existing knowledge of the laws of physics and everything else.
There are no answers to these criticisms so the simulation hypothesis is false.
Why would we need more research to work out that the simulation hypothesis is a bad idea? Computational universality implies that if we were being simulated on a computer, it would be impossible for us to know about the underlying hardware. Any hardware that implements a universal set of computational gates can support universal computation. There are lots of different kinds of universal gates, so you can’t tell what gates are being used by looking at the results of a computation. So the simulation hypothesis does no work in explaining what we observe. The simulation hypothesis also implies we can’t understand the real laws of physics, the physics of the simulator, since no experiment we conduct can tell us anything about the hardware. Another problem: the simulation might be programmed to change the laws of physics arbitrarily so it ruins all of our existing knowledge of the laws of physics and everything else.
There are no answers to these criticisms so the simulation hypothesis is false.