I noticed that you didn’t discuss a winter second wave triggered by a rise in the R0 (caused by easier transmission in cold) or the R_t (caused by different behaviour patterns), because your predictions seem to indicate that it will all be over by then in the US, with partial herd immunity in many places. For parts of the US that aren’t on that trajectory, or for Europe, this UK government report may be useful.
They go over a bunch of factors that might increase transmission and say that a ‘reasonable worst case’ scenario is R_t increasing to 1.7 in September and remaining constant, assuming effectively zero government action—total second wave deaths are about double the first, with a similar peak of currently infected individuals and the peak in January (meaning a lot of time to course-correct and reimpose measures). Honestly, this is a fair bit better than I would have guessed for the worst case scenario—a far cry from the sorts of things we discussed here in March.
They don’t say how plausible they think this scenario is or give explicit motivation for R_t=1.7, just model the consequences of that change. This is because they claim that the degree of seasonality of Covid-19 is highly uncertain. Is this true? I’ve heard some sources say it’s probably not that seasonal and others say it definitely is.
I noticed that you didn’t discuss a winter second wave triggered by a rise in the R0 (caused by easier transmission in cold) or the R_t (caused by different behaviour patterns), because your predictions seem to indicate that it will all be over by then in the US, with partial herd immunity in many places. For parts of the US that aren’t on that trajectory, or for Europe, this UK government report may be useful.
They go over a bunch of factors that might increase transmission and say that a ‘reasonable worst case’ scenario is R_t increasing to 1.7 in September and remaining constant, assuming effectively zero government action—total second wave deaths are about double the first, with a similar peak of currently infected individuals and the peak in January (meaning a lot of time to course-correct and reimpose measures). Honestly, this is a fair bit better than I would have guessed for the worst case scenario—a far cry from the sorts of things we discussed here in March.
They don’t say how plausible they think this scenario is or give explicit motivation for R_t=1.7, just model the consequences of that change. This is because they claim that the degree of seasonality of Covid-19 is highly uncertain. Is this true? I’ve heard some sources say it’s probably not that seasonal and others say it definitely is.