The tiny story status seems quite simple, in the sense that I can see how you could provide TinyStories levels of loss by following simple rules plus a bunch of memorization.
Empirically, one of the best models in the tiny stories paper is a super wide 1L transformer, which basically is bigrams, trigrams, and slightly more complicated variants [see Bucks post] but nothing that requires a step of reasoning.
I am actually quite uncertain where the significant gap between TinyStories, GPT-2 and GPT-4 is. Maybe I could fully understand TinyStories-1L if I tried, would this tell us about GPT-4? I feel like the result for TinyStories will be a bunch of heuristics.
Is that TinyStories model a super-wide attention-only transformer (the topic of the mechanistic interp work and Buck’s post you cite). I tried to figure it out briefly and couldn’t tell, but I bet it isn’t, and instead has extra stuff like an MLP block.
Regardless, in my view it would be a big advance to really understand how the TinyStories models work. Maybe they are “a bunch of heuristics” but maybe that’s all GPT-4, and our own minds, are as well…
That model has an Attention and MLP block (GPT2-style model with 1 layer but a bit wider, 21M params).
I changed my mind over the course of this morning. TheTinyStories models’ language isn’t that bad, and I think it’d be a decent research project to try to fully understand one of these.
I’ve been playing around with the models this morning, quotes from the 1-layer model:
Once upon a time, there was a lovely girl called Chloe. She loved to go for a walk every morning and one day she came across a road.
One day, she decided she wanted to go for a ride. She jumped up and down, and as she jumped into the horn, shouting whatever makes you feel like.
When Chloe was flying in the sky, she saw some big white smoke above her. She was so amazed and decided to fly down and take a closer look. When Chloe got to the edge of a park, there was a firework show. The girl smiled and said “Oh, hello, there. I will make sure to finish in my flying body before it gets too cold,” it said.
So Chloe flew to the park again, with a very persistent look at the white horn. She was very proud of her creation and was thankful for being so brave. Summary: Chloe, a persistent girl, explores the park with the help of a firework sparkle and is shown how brave the firework can be persistent.
and
Once upon a time, there lived a young boy. His name was Caleb. He loved to learn new things and gain healthy by playing outside.
One day, Caleb was in the garden and he started eating an onion. He was struggling to find enough food to eat, but he couldn’t find anything.
Just then, Caleb appeared with a magical lake. The young boy told Caleb he could help him find his way home if he ate the onion. Caleb was so excited to find the garden had become narrow enough for Caleb to get his wish.
Caleb thought about what the pepper was thinking. He then decided to try and find a safer way to play with them next time. From then on, Caleb became healthier and could eat sweets and sweets in the house.
With the peppers, Caleb ate delicious pepper and could be heard by again. He was really proud of himself and soon enough he was playing in the garden again.
This feels like the kind of inconsistency I expect from a model that has only one layer. It can recall that the story was about flying and stuff, and the names, but it feels a bit like the model doesn’t remember what it said a paragraph before.
2-layer model:
Once upon a time, there was a lazy bear. He lived in a tall village surrounded by thick trees and lonely rivers.
The bear wanted to explore the far side of the mountain, so he asked a kind bird if he wanted to come. The bird said, “Yes, but first let me seat in my big tree. Follow me!”
The bear was excited and followed the bird. They soon arrived at a beautiful mountain. The mountain was rich with juicy, delicious fruit. The bear was so happy and thanked the bird for his help. They both shared the fruit and had a great time.
The bear said goodbye to the bird and returned to his big tree, feeling very happy and content. From then on, the bear went for food every day and could often seat in his tall tree by the river. Summary: A lazy bear ventures on a mountain and finds a kind bird who helps him find food on his travels. The bear is happy and content with the food and a delicious dessert.
and
Once upon a time, there were two best friends, a gingerbread fox and a gingerbread wolf. Everyone loved the treats and had a great time together, playing games and eating the treats.
The gingerbread fox spoke up and said: “Let’s be like buying a house for something else!” But the ginger suggested that they go to the market instead. The friends agreed and they both went to the market.
Back home, the gingerbread fox was happy to have shared the treats with the friends. They all ate the treats with the chocolates, ran around and giggled together. The gingerbread fox thought this was the perfect idea, and every day the friends ate their treats and laughed together.
The friends were very happy and enjoyed every single morsel of it. No one else was enjoying the fun and laughter that followed. And every day, the friends continued to discuss different things and discover new new things to imagine. Summary: Two best friends, gingerbread and chocolate, go to the market to buy treats but end up only buying a small house for a treat each, which they enjoy doing together.
I think if we can fully understand (in the Python code sense, probably with a bunch of lookup tables) how these models work this will give us some insight into where we’re at with interpretability. Do the explanations feel sufficiently compressed? Does it feel like there’s a simpler explanation that the code & tables we’ve written?
Edit: Specifically I’m thinking of
Train SAEs on all layers
Use this for Attention QK circuits (and transform OV circuit into SAE basis, or Transcoder basis)
Yup: the 1L model samples are full of non-sequiturs, to the level I can’t imagine a human child telling a story that badly; whereas the first 2L model example has maybe one non-sequitur/plot jump (the way the story ignores the content of bird’s first line of dialog), which the rest of the story then works into it so it ends up almost making sense, in retrospect (except it would have made better sense if the bear had said that line). They second example has a few non-sequiturs, but they’re again not glaring and continuous the way the 1L output is. (As a parent) I can imagine a rather small human child telling a story with about the 2L level of plot inconsistencies.
From rereading the Tiny Stories paper, the 1L model did a really bad job of maintaining the internal consistency of the story and figuring out and allowing for the logical consequences of events, but otherwise did a passably good job of speaking coherent childish English. So the choice on transformer block count would depend on how interested you are in learning how to speak English that is coherent as well as grammatical. Personally I’d probably want to look at something in the 3–4-layer range, so it has an input layer, and output layer, and at least one middle layer, and might actually contain some small circuits.
I would LOVE to have an automated way of converting a Tiny Stories-size transformer to some form of declarative language spaghetti code. It would probably help to start with a heavily-quantized version. For example, a model trained using the techniques of the recent paper on building AI using trinary logic (so roughly a 1.6-bit quantization, and eliminating matrix multiplication entirely) might be a good place to start, combined with the sort of techniques the model-pruning folks have been working on for which model-internal interactions are important on the training set and which are just noise and can be discarded.
I strongly suspect that every transformer model is just a vast pile of heuristics. In certain cases, if trained on a situation that genuinely is simple and has a specific algorithm to solve it runnable during a model forward-pass (like modular arithmetic, for example), and with enough data to grok it, then the resulting heuristic may actually be an elegant True Name algorithm for the problem. Otherwise, it’s just going to be a pile of heuristics that SGD found and tuned. Fortunately SGD (for reasons that singular learning theory illuminates) has a simplicity bias that gives a prior that acts like Occam’s Razor or a Kolmogorov Complexity prior, so tends to prefer algorithms that generalize well (especially as the amount of data tends to infinity, thus groking), but obviously finding True Names isn’t going to be guaranteed.
The tiny story status seems quite simple, in the sense that I can see how you could provide TinyStories levels of loss by following simple rules plus a bunch of memorization.
Empirically, one of the best models in the tiny stories paper is a super wide 1L transformer, which basically is bigrams, trigrams, and slightly more complicated variants [see Bucks post] but nothing that requires a step of reasoning.
I am actually quite uncertain where the significant gap between TinyStories, GPT-2 and GPT-4 is. Maybe I could fully understand TinyStories-1L if I tried, would this tell us about GPT-4? I feel like the result for TinyStories will be a bunch of heuristics.
Is that TinyStories model a super-wide attention-only transformer (the topic of the mechanistic interp work and Buck’s post you cite). I tried to figure it out briefly and couldn’t tell, but I bet it isn’t, and instead has extra stuff like an MLP block.
Regardless, in my view it would be a big advance to really understand how the TinyStories models work. Maybe they are “a bunch of heuristics” but maybe that’s all GPT-4, and our own minds, are as well…
That model has an Attention and MLP block (GPT2-style model with 1 layer but a bit wider, 21M params).
I changed my mind over the course of this morning. TheTinyStories models’ language isn’t that bad, and I think it’d be a decent research project to try to fully understand one of these.
I’ve been playing around with the models this morning, quotes from the 1-layer model:
and
This feels like the kind of inconsistency I expect from a model that has only one layer. It can recall that the story was about flying and stuff, and the names, but it feels a bit like the model doesn’t remember what it said a paragraph before.
2-layer model:
and
I think if we can fully understand (in the Python code sense, probably with a bunch of lookup tables) how these models work this will give us some insight into where we’re at with interpretability. Do the explanations feel sufficiently compressed? Does it feel like there’s a simpler explanation that the code & tables we’ve written?
Edit: Specifically I’m thinking of
Train SAEs on all layers
Use this for Attention QK circuits (and transform OV circuit into SAE basis, or Transcoder basis)
Use Transcoders for MLPs
(Transcoders vs SAEs are somewhat redundant / different approaches, figure out how to connect everything together)
Yup: the 1L model samples are full of non-sequiturs, to the level I can’t imagine a human child telling a story that badly; whereas the first 2L model example has maybe one non-sequitur/plot jump (the way the story ignores the content of bird’s first line of dialog), which the rest of the story then works into it so it ends up almost making sense, in retrospect (except it would have made better sense if the bear had said that line). They second example has a few non-sequiturs, but they’re again not glaring and continuous the way the 1L output is. (As a parent) I can imagine a rather small human child telling a story with about the 2L level of plot inconsistencies.
From rereading the Tiny Stories paper, the 1L model did a really bad job of maintaining the internal consistency of the story and figuring out and allowing for the logical consequences of events, but otherwise did a passably good job of speaking coherent childish English. So the choice on transformer block count would depend on how interested you are in learning how to speak English that is coherent as well as grammatical. Personally I’d probably want to look at something in the 3–4-layer range, so it has an input layer, and output layer, and at least one middle layer, and might actually contain some small circuits.
I would LOVE to have an automated way of converting a Tiny Stories-size transformer to some form of declarative language spaghetti code. It would probably help to start with a heavily-quantized version. For example, a model trained using the techniques of the recent paper on building AI using trinary logic (so roughly a 1.6-bit quantization, and eliminating matrix multiplication entirely) might be a good place to start, combined with the sort of techniques the model-pruning folks have been working on for which model-internal interactions are important on the training set and which are just noise and can be discarded.
I strongly suspect that every transformer model is just a vast pile of heuristics. In certain cases, if trained on a situation that genuinely is simple and has a specific algorithm to solve it runnable during a model forward-pass (like modular arithmetic, for example), and with enough data to grok it, then the resulting heuristic may actually be an elegant True Name algorithm for the problem. Otherwise, it’s just going to be a pile of heuristics that SGD found and tuned. Fortunately SGD (for reasons that singular learning theory illuminates) has a simplicity bias that gives a prior that acts like Occam’s Razor or a Kolmogorov Complexity prior, so tends to prefer algorithms that generalize well (especially as the amount of data tends to infinity, thus groking), but obviously finding True Names isn’t going to be guaranteed.