The examples they provide one of the announcement blog posts (under the “Chain of Thought” section) suggest this is more than just marketing hype (even if these examples are cherry-picked):
Here are some excerpts from two of the eight examples:
Cipher:
Hmm.
But actually in the problem it says the example:
...
Option 2: Try mapping as per an assigned code: perhaps columns of letters?
Alternatively, perhaps the cipher is more complex.
Alternatively, notice that “oyfjdnisdr” has 10 letters and “Think” has 5 letters.
...
Alternatively, perhaps subtract: 25 −15 = 10.
No.
Alternatively, perhaps combine the numbers in some way.
Alternatively, think about their positions in the alphabet.
Alternatively, perhaps the letters are encrypted via a code.
Alternatively, perhaps if we overlay the word ‘Think’ over the cipher pairs ‘oy’, ‘fj’, etc., the cipher is formed by substituting each plaintext letter with two letters.
Alternatively, perhaps consider the ‘original’ letters.
Science:
Wait, perhaps more accurate to find Kb for F^− and compare it to Ka for NH4+. ... But maybe not necessary. ... Wait, but in our case, the weak acid and weak base have the same concentration, because NH4F dissociates into equal amounts of NH4^+ and F^- ... Wait, the correct formula is:
The examples they provide one of the announcement blog posts (under the “Chain of Thought” section) suggest this is more than just marketing hype (even if these examples are cherry-picked):
Here are some excerpts from two of the eight examples:
Cipher:
Science: