When you talk about whether we’re in a high or low path-dependence “world”, do you think that there is a (somewhat robust) answer to this question that holds across most ML training processes? I think it’s more likely that some training processes are highly path-dependent and some aren’t. We definitely have evidence that some are path-dependent, e.g. Ethan’s comment and other examples like https://arxiv.org/abs/2002.06305, and almost any RL paper where different random seeds of the training process often result in quite different results. Arguably I don’t think we have conclusive of any particular existing training process being low-path dependence, because the burden of proof is heavy for proving that two models are basically equivalent on basically all inputs (given that they’re very unlikely to literally have identical weights, so the equivalence would have to be at a high level of abstraction).
Reasoning about the path dependence of a training process specifically, rather than whether all of the ML/AGI development world is path dependent, seems more precise, and also allows us to reason about whether we want a high or low path-dependence training process, and considering that as an intervention, rather than a state of the world we can’t change.
Yeah, I agree with that. I think path dependence will likely vary across training processes and that we should in fact view that as an important intervention point.
When you talk about whether we’re in a high or low path-dependence “world”, do you think that there is a (somewhat robust) answer to this question that holds across most ML training processes? I think it’s more likely that some training processes are highly path-dependent and some aren’t. We definitely have evidence that some are path-dependent, e.g. Ethan’s comment and other examples like https://arxiv.org/abs/2002.06305, and almost any RL paper where different random seeds of the training process often result in quite different results. Arguably I don’t think we have conclusive of any particular existing training process being low-path dependence, because the burden of proof is heavy for proving that two models are basically equivalent on basically all inputs (given that they’re very unlikely to literally have identical weights, so the equivalence would have to be at a high level of abstraction).
Reasoning about the path dependence of a training process specifically, rather than whether all of the ML/AGI development world is path dependent, seems more precise, and also allows us to reason about whether we want a high or low path-dependence training process, and considering that as an intervention, rather than a state of the world we can’t change.
Yeah, I agree with that. I think path dependence will likely vary across training processes and that we should in fact view that as an important intervention point.