I think you mentioned something like this, but Drexler expected a first generation of nanotechnology based on engineered enzymes. For example, in “Engines of Creation”, he imagines using enzymes to synthesize airplane parts. Of course the real use of enzymes is much more restricted: cleaning products such as dishwasher detergent, additives in food, pharmaceutical synthesis. It has always seemed to me that someone who really believed Drexler and wanted to bring his imagined future about would actually not be working on anything like the designs in “Nanosystems”, but on bringing down the cost of enzyme manufacturing. From that perspective it’s interesting that you note that the most promising direction in Drexlery mechanosynthesis is DNA origami. Not quite what Drexler imagined (nucleic acid rather than protein), but still starting with biology.
Also, I think it’s very interesting that silicon turned out to be easier than diamond. While I agree with Yudkowsky that biology is nowhere near the limits of what is possible on the nanometer-scale due to constraints imposed by historical accidents, I disagree with Yudkowsky’s core example of this, the weak interactions holding proteins in the folded configuration. Stronger bonds make things harder, not easier. Maybe the switch from diamond to silicon is an illustration of that.
Editing to add one more comment… Drexler’s definition of “diamondoid” is indeed strange. If we take it literally, it seems that glass is “diamondoid”. But then, “diamondoid” microbes already exist, that is, diatoms. Or at least, microbes with “diamondoid” cell walls.
Yes, this exactly. I can’t envision what kind of informationally-sensitive chemistry is supposed to happen at standard temperature and pressure in an aqueous environment, using “diamondoid”.
Proteins are so capable, precisely because they are free to jiggle around, assume different configurations and charge states, etc.
Without a huge amount of further clarification, I think this “nanotech doom” idea has to go. (and I’m not aware of any other instant, undetectable AI takeover scheme suggestions that don’t rely on new physics)
Very interesting. A few comments.
I think you mentioned something like this, but Drexler expected a first generation of nanotechnology based on engineered enzymes. For example, in “Engines of Creation”, he imagines using enzymes to synthesize airplane parts. Of course the real use of enzymes is much more restricted: cleaning products such as dishwasher detergent, additives in food, pharmaceutical synthesis. It has always seemed to me that someone who really believed Drexler and wanted to bring his imagined future about would actually not be working on anything like the designs in “Nanosystems”, but on bringing down the cost of enzyme manufacturing. From that perspective it’s interesting that you note that the most promising direction in Drexlery mechanosynthesis is DNA origami. Not quite what Drexler imagined (nucleic acid rather than protein), but still starting with biology.
Also, I think it’s very interesting that silicon turned out to be easier than diamond. While I agree with Yudkowsky that biology is nowhere near the limits of what is possible on the nanometer-scale due to constraints imposed by historical accidents, I disagree with Yudkowsky’s core example of this, the weak interactions holding proteins in the folded configuration. Stronger bonds make things harder, not easier. Maybe the switch from diamond to silicon is an illustration of that.
Editing to add one more comment… Drexler’s definition of “diamondoid” is indeed strange. If we take it literally, it seems that glass is “diamondoid”. But then, “diamondoid” microbes already exist, that is, diatoms. Or at least, microbes with “diamondoid” cell walls.
Yes, this exactly. I can’t envision what kind of informationally-sensitive chemistry is supposed to happen at standard temperature and pressure in an aqueous environment, using “diamondoid”.
Proteins are so capable, precisely because they are free to jiggle around, assume different configurations and charge states, etc.
Without a huge amount of further clarification, I think this “nanotech doom” idea has to go. (and I’m not aware of any other instant, undetectable AI takeover scheme suggestions that don’t rely on new physics)