What an “aspiring chemist” should do depends a lot on age and where they are in the educational process. For children below high-school age, I think there are lots of great experiments you can do to illustrate principles of chemistry. Lack of originality isn’t a bug there, it’s a feature. In high school, if you think you like science, take chemistry! There should be a lab component in most schools, so you can at least get a flavor for what working with chemicals is like. Access to equipment like this is an underrated component of the educational system. For college students, all the entry-level courses (general, organic, inorganic) are likely to have lab components. There are a few programs that separate the lab courses from the lectures, but they’re the exception. The experiments won’t be cutting-edge, but rather are designed to give students an understanding of chemical principles and what it’s like to work with chemicals in a research setting.
Where things get really interesting from a lab perspective is if you can convince a professor to let you into their research lab as an undergraduate assistant. It’s helpful if you’re at a research university rather than a small liberal arts college because the lab facilities will be more conducive to cutting-edge research, and there will be grad students and postdocs who relish the opportunity to teach a curious undergrad how to do chemistry. You likely won’t be designing your own project, but will have the opportunity to use modern equipment to do novel research under supervision. My undergraduate research experience was formative and a huge reason why I do what I do today. I was also lucky enough to get to pay it forward and mentor undergraduates when I was a grad student and a postdoc.
Graduate school in chemistry has a (somewhat deserved) reputation as a potentially miserable time. You get lots of great experience and training, but the hours are brutal and the rewards can be sparse. Synthesis in particular is a field where no matter how brilliant you are, lots of time in the lab is still essential for success. At this point you will work with your advisor to design and execute research projects, and success depends on your insight and work ethic. You can mitigate a lot of the problems with grad school by being careful about which lab you choose and being willing to set boundaries on your work time. It’s also worth noting that I know a lot of really good chemists who started working in industry immediately after their bachelor’s, or after a master’s degree.
For the adult who has completed their education and wants to start doing chemistry at a level other than “fun home experiments”, I don’t have great suggestions. Maybe this is just a lack of imagination on my part as someone inside “the system” but the hurdles I talked about above are pretty daunting.
Many of the coolest and most useful activities for learning are sealed off from non-professionals, or at least are expensive and time confusing to obtain certification or access. Usually for good reason.
This seems like a fundamental dilemma of the role of school. To make students directly see what’s cool about different subjects, they need lots of hands-on experience. But the vast majority of their time, and most of their evaluation prior to grad school, comes from book work. Access to hands-on projects and a sense of freedom and agency is limited at best.
And ultimately, that’s for reasons of safety and expense, which we can’t just criticize away.
It seems then that a big learning skill is maximizing access to such applied projects.
I wonder, then, if it would be better to orient school around single subjects from an earlier age. It makes more sense to give a student heightened access to mentorship, equipment, and materials if that stuff is their obsession. And for a self-studier, it seems important to figure out first what you want to obsess yourself with, and then focus on getting maximum access to applied learning environments.
What an “aspiring chemist” should do depends a lot on age and where they are in the educational process. For children below high-school age, I think there are lots of great experiments you can do to illustrate principles of chemistry. Lack of originality isn’t a bug there, it’s a feature. In high school, if you think you like science, take chemistry! There should be a lab component in most schools, so you can at least get a flavor for what working with chemicals is like. Access to equipment like this is an underrated component of the educational system. For college students, all the entry-level courses (general, organic, inorganic) are likely to have lab components. There are a few programs that separate the lab courses from the lectures, but they’re the exception. The experiments won’t be cutting-edge, but rather are designed to give students an understanding of chemical principles and what it’s like to work with chemicals in a research setting.
Where things get really interesting from a lab perspective is if you can convince a professor to let you into their research lab as an undergraduate assistant. It’s helpful if you’re at a research university rather than a small liberal arts college because the lab facilities will be more conducive to cutting-edge research, and there will be grad students and postdocs who relish the opportunity to teach a curious undergrad how to do chemistry. You likely won’t be designing your own project, but will have the opportunity to use modern equipment to do novel research under supervision. My undergraduate research experience was formative and a huge reason why I do what I do today. I was also lucky enough to get to pay it forward and mentor undergraduates when I was a grad student and a postdoc.
Graduate school in chemistry has a (somewhat deserved) reputation as a potentially miserable time. You get lots of great experience and training, but the hours are brutal and the rewards can be sparse. Synthesis in particular is a field where no matter how brilliant you are, lots of time in the lab is still essential for success. At this point you will work with your advisor to design and execute research projects, and success depends on your insight and work ethic. You can mitigate a lot of the problems with grad school by being careful about which lab you choose and being willing to set boundaries on your work time. It’s also worth noting that I know a lot of really good chemists who started working in industry immediately after their bachelor’s, or after a master’s degree.
For the adult who has completed their education and wants to start doing chemistry at a level other than “fun home experiments”, I don’t have great suggestions. Maybe this is just a lack of imagination on my part as someone inside “the system” but the hurdles I talked about above are pretty daunting.
Many of the coolest and most useful activities for learning are sealed off from non-professionals, or at least are expensive and time confusing to obtain certification or access. Usually for good reason.
This seems like a fundamental dilemma of the role of school. To make students directly see what’s cool about different subjects, they need lots of hands-on experience. But the vast majority of their time, and most of their evaluation prior to grad school, comes from book work. Access to hands-on projects and a sense of freedom and agency is limited at best.
And ultimately, that’s for reasons of safety and expense, which we can’t just criticize away.
It seems then that a big learning skill is maximizing access to such applied projects.
I wonder, then, if it would be better to orient school around single subjects from an earlier age. It makes more sense to give a student heightened access to mentorship, equipment, and materials if that stuff is their obsession. And for a self-studier, it seems important to figure out first what you want to obsess yourself with, and then focus on getting maximum access to applied learning environments.