Any physical system has a finite amount of mass and energy that limit its possible behaviors. If you take the log of (one variable of) the system, its full range of behaviors will use fewer numbers, but that’s all that will happen. For example, the wind is usually between 0.001 m/s (quite still) and 100 m/s (unprecedented hurricane). If you take the base-10 log, it’s usually between −3 and 2. A change of 2 can mean a change from .001 to .1 m/s (quite still to barely noticeable breeze) or a change from 1 m/s to 100 m/s (modest breeze to everything’s gone). For lots of common phenomena, log scales are too imprecise to be useful.
Chaotic systems can’t be predicted in detail, but physics and common sense still apply. Chaotic weather is just ordinary weather.
Any physical system has a finite amount of mass and energy that limit its possible behaviors. If you take the log of (one variable of) the system, its full range of behaviors will use fewer numbers, but that’s all that will happen. For example, the wind is usually between 0.001 m/s (quite still) and 100 m/s (unprecedented hurricane). If you take the base-10 log, it’s usually between −3 and 2. A change of 2 can mean a change from .001 to .1 m/s (quite still to barely noticeable breeze) or a change from 1 m/s to 100 m/s (modest breeze to everything’s gone). For lots of common phenomena, log scales are too imprecise to be useful.
Chaotic systems can’t be predicted in detail, but physics and common sense still apply. Chaotic weather is just ordinary weather.