Again, the dominance reasoning seems impeccable to me. In fact, I’m tempted to say that I would want any future advanced decision theory to satisfy some form of this dominance principle: it’s crazy to ever choice an act that is guaranteed to be worse.
It’s not always cooperating- that would be dumb. The claim is that there can be improvements on what a CDT algorithm can achieve: TDT or UDT still defects against an opponent that always defects or always cooperates, but achieves (C,C) in some situations where CDT gets (D,D). The dominance reasoning is only impeccable if agents’ decisions really are independent, just like certain theorems in probability only hold when the random variables are independent. (And yes, this is a precisely analogous meaning of “independent”.)
Aha. So when agents’ actions are probabilistically independent, only then does the dominance reasoning kick in?
So the causal decision theorist will say that the dominance reasoning is applicable whenever the agents’ actions are causally independent. So do these other decision theories deny this? That is, do they claim that the dominance reasoning can be unsound even when my choice doesn’t causally impact the choice of the other?
That’s one valid way of looking at the distinction.
CDT allows the causal link from its current move in chess to its opponent’s next move, so it doesn’t view the two as independent.
In Newcomb’s Problem, traditional CDT doesn’t allow a causal link from its decision now to Omega’s action before, so it applies the independence assumption to conclude that two-boxing is the dominant strategy. Ditto with playing PD against its clone.
(Come to think of it, it’s basically a Markov chain formalism.)
So these alternative decision theories have relations of dependence going back in time? Are they sort of couterfactual dependences like “If I were to one-box, Omega would have put the million in the box”? That just sounds like the Evidentialist “news value” account. So it must be some other kind of relation of dependence going backwards in time that rules out the dominance reasoning. I guess I need “Other Decision Theories: A Less Wrong Primer”.
It’s not always cooperating- that would be dumb. The claim is that there can be improvements on what a CDT algorithm can achieve: TDT or UDT still defects against an opponent that always defects or always cooperates, but achieves (C,C) in some situations where CDT gets (D,D). The dominance reasoning is only impeccable if agents’ decisions really are independent, just like certain theorems in probability only hold when the random variables are independent. (And yes, this is a precisely analogous meaning of “independent”.)
Aha. So when agents’ actions are probabilistically independent, only then does the dominance reasoning kick in?
So the causal decision theorist will say that the dominance reasoning is applicable whenever the agents’ actions are causally independent. So do these other decision theories deny this? That is, do they claim that the dominance reasoning can be unsound even when my choice doesn’t causally impact the choice of the other?
That’s one valid way of looking at the distinction.
CDT allows the causal link from its current move in chess to its opponent’s next move, so it doesn’t view the two as independent.
In Newcomb’s Problem, traditional CDT doesn’t allow a causal link from its decision now to Omega’s action before, so it applies the independence assumption to conclude that two-boxing is the dominant strategy. Ditto with playing PD against its clone.
(Come to think of it, it’s basically a Markov chain formalism.)
So these alternative decision theories have relations of dependence going back in time? Are they sort of couterfactual dependences like “If I were to one-box, Omega would have put the million in the box”? That just sounds like the Evidentialist “news value” account. So it must be some other kind of relation of dependence going backwards in time that rules out the dominance reasoning. I guess I need “Other Decision Theories: A Less Wrong Primer”.