Immune system is way old. Why is it just the complex algorithms we don’t quite understand, that we think evolve quickly in mammals, but not the obvious things like retinal pigments, number of eyes, number of limbs, etc? Why we ‘evolve support for language’ in the time during which we barely adapt our legs to walking on flat surface again?
The emotional responses and desires are, to some extent, evolved, but the complex mechanisms of calculation which objects to desire have to be created from scratch.
The brain does 100 steps per second, 8 640 000 steps per day, 3 153 600 000 steps per year. The evolution does 1 step per generation. There are very tight bounds on what functionality could evolve in a given timeframe. And there is a lot that can be generated in very short time by the brain.
Yes. Very old, incredibly powerful and amazingly complex. The complexity of that feature of humans (and diverse relatives) makes the appeal “regarding how complex anything resembling an algorithm is (compared to rest of the body)” incredibly weak. Most algorithms used by the brain, learned or otherwise, are simpler than what the rest of the body does.
The immune system doesn’t have some image recognition algo that looks at projection of proteins and recognize their shapes. It uses molecular binding. And it evolved over many billions generations, in much shorter living animals, re-using, to huge extent, the features that evolved back in single celled organisms. And as far as algorithms go, it consists just of a huge number of if clauses, chained very few levels deep.
The 3D object recognition from 2D images from the eyes, for comparison, is an incredibly difficult task.
edit: on topic of immune ‘algorithm’ that makes you acquire immunity to foreign, but not your, chemicals:
Randomly edit the proteins so that they stick. The random editing happens by utilising somewhat broken replication machinery. Some of your body evolves immune response when you catch flu or cold. The products of that evolution are not even passed down, that’s how amazingly complex and well evolved it is (not).
The immune system doesn’t have some image recognition algo that looks at projection of proteins and recognize their shapes. It uses molecular binding. And it evolved over many billions generations, in much shorter living animals, re-using, to huge extent, the features that evolved back in single celled organisms. And as far as algorithms go, it consists just of a huge number of if clauses, chained very few levels deep.
This matches my understanding.
The 3D object recognition from 2D images from the eyes, for comparison, is an incredibly difficult task.
And here I no longer agree, at least when it comes to the assumption that the aforementioned task is not incredibly difficult.
I added in an edit a reference as to how immune system, basically, operates. You have population of b-cells, which evolves for elimination of foreign substances. Good ol evolution re-used to evolve a part of the b-cell genome, inside your body. The results seem very impressive—recognition of substances—but all the heavy lifting is done using very simple and very stupid methods. If anything, our proneness to seasonal cold and flu is a great demonstration of the extreme stupidity of the immune system. The viruses only need to modify some entirely non-functional proteins to have to be recognized afresh. That’s because there is no pattern recognition going on what so ever, only incredibly stupid process of evolution of b-cells.
If I was trying to claim that immune systems were complex in a way that is similar in nature to learned cortical algorithms then I would be thoroughly dissuaded by now.
The immune system is actually a rather good example of what sort of mechanisms you can expect to evolve over many billions generations, and in which way they can be called ‘complex’.
My original point was that much of evolutionary cognitive science is explaining way more complex mechanisms (with a lot of hidden complexity. For very outrageous example consider preference for specific details of mate body shape, which is a task with immense hidden complexity) as evolving in thousandth the generations count of the immune system. Instead of being generated in some way by operation of the brain, in the context whereby other brain areas are only marginally less effective at the tasks—suggesting not the hardwiring of algorithms of any kind but minor tweaks to the properties of the network which slightly improve the network’s efficiency after the network learns the specific task.
We probably don’t disagree too much on the core issue here by the way. Compared to an arbitrary reference class that is somewhat meaningful I tend to be far more likely to accepting of the ‘blank slate’ capabilities of the brain. The way it just learns how to build models of reality from visual input is amazing. It’s particularly fascinating to see areas in the brain that are consistent across (nearly) all people that turn out not to be hardwired after all. Except in as much as they happen to be always connected to the same stuff and usually develop in the same way!
Immune system is way old. Why is it just the complex algorithms we don’t quite understand, that we think evolve quickly in mammals, but not the obvious things like retinal pigments, number of eyes, number of limbs, etc? Why we ‘evolve support for language’ in the time during which we barely adapt our legs to walking on flat surface again?
The emotional responses and desires are, to some extent, evolved, but the complex mechanisms of calculation which objects to desire have to be created from scratch.
The brain does 100 steps per second, 8 640 000 steps per day, 3 153 600 000 steps per year. The evolution does 1 step per generation. There are very tight bounds on what functionality could evolve in a given timeframe. And there is a lot that can be generated in very short time by the brain.
Yes. Very old, incredibly powerful and amazingly complex. The complexity of that feature of humans (and diverse relatives) makes the appeal “regarding how complex anything resembling an algorithm is (compared to rest of the body)” incredibly weak. Most algorithms used by the brain, learned or otherwise, are simpler than what the rest of the body does.
The immune system doesn’t have some image recognition algo that looks at projection of proteins and recognize their shapes. It uses molecular binding. And it evolved over many billions generations, in much shorter living animals, re-using, to huge extent, the features that evolved back in single celled organisms. And as far as algorithms go, it consists just of a huge number of if clauses, chained very few levels deep.
The 3D object recognition from 2D images from the eyes, for comparison, is an incredibly difficult task.
edit: on topic of immune ‘algorithm’ that makes you acquire immunity to foreign, but not your, chemicals:
http://en.wikipedia.org/wiki/Somatic_hypermutation
Randomly edit the proteins so that they stick. The random editing happens by utilising somewhat broken replication machinery. Some of your body evolves immune response when you catch flu or cold. The products of that evolution are not even passed down, that’s how amazingly complex and well evolved it is (not).
This matches my understanding.
And here I no longer agree, at least when it comes to the assumption that the aforementioned task is not incredibly difficult.
I added in an edit a reference as to how immune system, basically, operates. You have population of b-cells, which evolves for elimination of foreign substances. Good ol evolution re-used to evolve a part of the b-cell genome, inside your body. The results seem very impressive—recognition of substances—but all the heavy lifting is done using very simple and very stupid methods. If anything, our proneness to seasonal cold and flu is a great demonstration of the extreme stupidity of the immune system. The viruses only need to modify some entirely non-functional proteins to have to be recognized afresh. That’s because there is no pattern recognition going on what so ever, only incredibly stupid process of evolution of b-cells.
If I was trying to claim that immune systems were complex in a way that is similar in nature to learned cortical algorithms then I would be thoroughly dissuaded by now.
The immune system is actually a rather good example of what sort of mechanisms you can expect to evolve over many billions generations, and in which way they can be called ‘complex’.
My original point was that much of evolutionary cognitive science is explaining way more complex mechanisms (with a lot of hidden complexity. For very outrageous example consider preference for specific details of mate body shape, which is a task with immense hidden complexity) as evolving in thousandth the generations count of the immune system. Instead of being generated in some way by operation of the brain, in the context whereby other brain areas are only marginally less effective at the tasks—suggesting not the hardwiring of algorithms of any kind but minor tweaks to the properties of the network which slightly improve the network’s efficiency after the network learns the specific task.
We probably don’t disagree too much on the core issue here by the way. Compared to an arbitrary reference class that is somewhat meaningful I tend to be far more likely to accepting of the ‘blank slate’ capabilities of the brain. The way it just learns how to build models of reality from visual input is amazing. It’s particularly fascinating to see areas in the brain that are consistent across (nearly) all people that turn out not to be hardwired after all. Except in as much as they happen to be always connected to the same stuff and usually develop in the same way!
So are eyes.