Why would someone tell us “Linda is a bank teller and Linda is a bank teller and active in the feminist movement.”? That would be indeed a strange sentence.
ETA: Maybe the parent comment can be formulated more clearly in the following way (using frequentist language): People parse the discussed question not as what fraction of people from category E belong also into category A?, but rather what fraction of people telling us that a person (who certainly belongs to E) belongs also to A speak truth?, or even better, what fraction of individual statements of the described type is true?
Although A may be proper subset of B, statements telling A about any particular Linda aren’t proper subset of statements telling B about her. Quite contrary, they are disjoint. (That is, people tend to count frequencies of statements of given precise formulation, i.e. don’t count each occurence of B as a simultaneous occurence of A, even if B can be reanalysed as A and C. Of course, I am relying on my intuition in that and can be guilty of mind projection here.)
It is entirely possible to imagine that among real world statements about former environmental activists, the exact sentence “she is a bank teller” is less often true than the exact sentence “she is a bank teller and an active feminist”. I am quite inclined to believe that more detailed information is more often true than less detailed one, since the former is more likely to be given by informed people, and this mechanism may have contributed to evolution of heuristics which produce the experimentally detected conjunction fallacy.
Why would someone tell us “Linda is a bank teller and Linda is a bank teller and active in the feminist movement.”? That would be indeed a strange sentence.
ETA: Maybe the parent comment can be formulated more clearly in the following way (using frequentist language): People parse the discussed question not as what fraction of people from category E belong also into category A?, but rather what fraction of people telling us that a person (who certainly belongs to E) belongs also to A speak truth?, or even better, what fraction of individual statements of the described type is true?
Although A may be proper subset of B, statements telling A about any particular Linda aren’t proper subset of statements telling B about her. Quite contrary, they are disjoint. (That is, people tend to count frequencies of statements of given precise formulation, i.e. don’t count each occurence of B as a simultaneous occurence of A, even if B can be reanalysed as A and C. Of course, I am relying on my intuition in that and can be guilty of mind projection here.)
It is entirely possible to imagine that among real world statements about former environmental activists, the exact sentence “she is a bank teller” is less often true than the exact sentence “she is a bank teller and an active feminist”. I am quite inclined to believe that more detailed information is more often true than less detailed one, since the former is more likely to be given by informed people, and this mechanism may have contributed to evolution of heuristics which produce the experimentally detected conjunction fallacy.